Package | Description |
---|---|
deepnetts.data |
Data structures to store example data used for building machine learning models.
|
deepnetts.data.norm |
Data normalization methods, used to scale data to specific range, in order to make them suitable for use by a neural network.
|
deepnetts.net |
Neural network architectures with their corresponding builders.
|
deepnetts.net.layers |
Neural network layers, which are main building blocks of a neural network.
|
deepnetts.net.layers.activation |
Activation functions for neural network layers.
|
deepnetts.util |
Various utility classes including Tensor, image operations, multithreading, exceptions etc.
|
Modifier and Type | Method and Description |
---|---|
Tensor |
ExampleImage.getInput() |
Tensor |
MLDataItem.getInput()
Returns an input for machine learning model of this item.
|
Tensor |
TabularDataSet.Item.getInput() |
Tensor |
ImageSet.getMean() |
Tensor |
ExampleImage.getTargetOutput() |
Tensor |
MLDataItem.getTargetOutput()
Returns target output for machine learning model of this item.
|
Tensor |
TabularDataSet.Item.getTargetOutput() |
Tensor |
ImageSet.zeroMean()
Applies zero mean normalization to entire dataset, and returns mean
tensor.
|
Modifier and Type | Method and Description |
---|---|
void |
ExampleImage.setTargetOutput(Tensor targetOutput) |
Constructor and Description |
---|
Item(Tensor input,
Tensor targetOutput) |
Modifier and Type | Method and Description |
---|---|
Tensor |
MaxScaler.getMaxInputs() |
Tensor |
MaxScaler.getMaxOutputs() |
Modifier and Type | Method and Description |
---|---|
void |
MaxScaler.deNormalizeInputs(Tensor inputs) |
void |
MaxScaler.deNormalizeOutputs(Tensor outputs)
De-normalize given output vector in-place.
|
void |
MaxScaler.normalizeInput(Tensor input) |
abstract void |
AbstractScaler.scaleInput(Tensor input)
Normalize input of deployed model
|
void |
DecimalScaler.scaleInput(Tensor input) |
void |
MaxScaler.scaleInput(Tensor input) |
void |
MinMaxScaler.scaleInput(Tensor input) |
void |
RangeScaler.scaleInput(Tensor input) |
void |
Standardizer.scaleInput(Tensor input) |
void |
MaxScaler.setMaxInputs(Tensor maxInputs) |
void |
MaxScaler.setMaxOutputs(Tensor maxOutputs) |
Modifier and Type | Method and Description |
---|---|
Tensor |
NeuralNetwork.predict(Tensor input)
Returns the prediction of this neural network for the given input.
|
Modifier and Type | Method and Description |
---|---|
List<Tensor> |
ConvolutionalNetwork.getDeltaWeights()
Returns delta weights for all layers.
|
List<Tensor> |
ConvolutionalNetwork.getLayersOutputs()
Returns outputs of all layers.
|
Preprocessing<Tensor> |
NeuralNetwork.getPreprocessing()
Gets preprocessing that needs to be performed before input is fed to this network.
|
List<Tensor> |
ConvolutionalNetwork.getWeights()
Returns weights from all layers in this network as a list of tensors.
|
Modifier and Type | Method and Description |
---|---|
Tensor |
NeuralNetwork.predict(Tensor input)
Returns the prediction of this neural network for the given input.
|
void |
ConvolutionalNetwork.setInput(Tensor input) |
void |
NeuralNetwork.setInput(Tensor inputs)
Sets network input and calculates entire network (triggers forward pass).
|
Modifier and Type | Method and Description |
---|---|
void |
NeuralNetwork.setPreprocessing(Preprocessing<Tensor> preprocessing)
Sets preprocessing that needs to be performed before input is fed to this network.
|
Modifier and Type | Method and Description |
---|---|
Tensor |
AbstractLayer.getDeltas() |
Tensor |
Layer.getDeltas()
Returns layer deltas/errors (as a tensor).
|
Tensor |
AbstractLayer.getDeltaWeights() |
Tensor |
ConvolutionalLayer.getFilterDeltaWeights() |
Tensor |
ConvolutionalLayer.getFilters() |
Tensor |
AbstractLayer.getGradients() |
Tensor |
AbstractLayer.getOutputs() |
Tensor |
Layer.getOutputs()
Returns layer outputs (as a tensor).
|
Tensor |
AbstractLayer.getPrevDeltaWeights() |
Tensor |
AbstractLayer.getWeights() |
Modifier and Type | Method and Description |
---|---|
void |
AbstractLayer.setDeltas(Tensor deltas) |
void |
ConvolutionalLayer.setFilters(Tensor filters) |
void |
InputLayer.setInput(Tensor in)
Sets network input
|
void |
AbstractLayer.setOutputs(Tensor outputs) |
void |
AbstractLayer.setPrevDeltaWeights(Tensor prevDeltaWeights) |
void |
AbstractLayer.setWeights(Tensor weights) |
Modifier and Type | Method and Description |
---|---|
void |
ActivationFunction.apply(Tensor tensor,
int channel) |
void |
LeakyRelu.apply(Tensor tensor,
int channel) |
void |
Linear.apply(Tensor tensor,
int channel) |
void |
Relu.apply(Tensor tensor,
int channel) |
void |
Sigmoid.apply(Tensor tensor,
int channel) |
void |
Tanh.apply(Tensor tensor,
int channel) |
void |
ActivationFunction.apply(Tensor tensor,
int from,
int to) |
void |
LeakyRelu.apply(Tensor tensor,
int from,
int to) |
void |
Linear.apply(Tensor tensor,
int from,
int to) |
void |
Relu.apply(Tensor tensor,
int from,
int to) |
void |
Sigmoid.apply(Tensor tensor,
int from,
int to) |
void |
Tanh.apply(Tensor tensor,
int from,
int to) |
Modifier and Type | Method and Description |
---|---|
static Tensor |
Tensors.absMax(Tensor t,
Tensor max)
Returns tensors with max value for each component of input tensors.
|
static Tensor |
Tensors.absMin(Tensor t,
Tensor min) |
Tensor |
Tensor.clone() |
Tensor |
Tensor.copy() |
static Tensor |
Tensor.create(int rows,
int cols,
float[] values)
Factory method for creating tensor instance,
|
static Tensor |
Tensor.create(int rows,
int cols,
int depth,
float[] values) |
static Tensor |
Tensor.create(int rows,
int cols,
int depth,
int fourthDim,
float[] values) |
Tensor |
ImagePreprocessing.getMean() |
static Tensor |
Tensor.of(float[] values) |
static Tensor |
Tensors.ones(int cols) |
static Tensor |
Tensors.random(int size) |
static Tensor |
Tensors.random(int rows,
int cols)
Generate and return random tensor with specified number of rows and cols.
|
static Tensor |
Tensors.random(int rows,
int cols,
int depth) |
static Tensor |
Tensors.random(int rows,
int cols,
int depth,
int fourthDim) |
static Tensor |
Tensors.zeros(int cols) |
Modifier and Type | Method and Description |
---|---|
static Tensor |
Tensors.absMax(Tensor t,
Tensor max)
Returns tensors with max value for each component of input tensors.
|
static Tensor |
Tensors.absMin(Tensor t,
Tensor min) |
void |
Tensor.add(Tensor t)
Adds specified tensor t to this tensor.
|
void |
ImagePreprocessing.apply(Tensor input) |
static void |
Tensors.copy(Tensor src,
Tensor dest) |
void |
Tensor.div(Tensor t) |
boolean |
Tensor.equals(Tensor t2,
float delta) |
static void |
Tensors.fillFourthDim(Tensor deltaWeights,
int fourthIdx,
float val) |
static void |
Tensors.max(Tensor t1,
Tensor t2,
Tensor result) |
static void |
Tensors.min(Tensor t1,
Tensor t2,
Tensor result) |
void |
Tensor.multiplyElementWise(Tensor tensor2) |
void |
ImagePreprocessing.setMean(Tensor mean) |
void |
Tensor.sub(Tensor t)
Subtracts specified tensor t from this tensor.
|
static void |
Tensor.sub(Tensor t1,
Tensor t2)
Subtracts tensor t2 from t1.
|
static String |
Tensor.valuesAsString(Tensor[] tensors) |
Constructor and Description |
---|
Tensor(Tensor t)
Public deep copy / clone constructor.
|
Copyright © 2022. All rights reserved.