Package deepnetts.data.norm
Class RangeScaler
java.lang.Object
deepnetts.data.norm.AbstractScaler
deepnetts.data.norm.RangeScaler
- All Implemented Interfaces:
 Serializable,javax.visrec.ml.data.preprocessing.Scaler<javax.visrec.ml.data.DataSet<MLDataItem>>
Normalize data set to specified range.
 Using formula X = (X-MIN) / (MAX-MIN)
 Effectively scales all inputs and outputs to specified [MIN,MAX] range
 Normalizes inputs and outputs.
- Author:
 - Zoran Sevarac
 - See Also:
 
- 
Constructor Summary
ConstructorsConstructorDescriptionRangeScaler(float min, float max) Creates a new instance of range normalizer initialized to given min and max values. - 
Method Summary
Modifier and TypeMethodDescriptionvoidapply(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) Performs normalization on the given inputs.voidscaleInput(TensorBase input) Normalize input of deployed model 
- 
Constructor Details
- 
RangeScaler
public RangeScaler(float min, float max) Creates a new instance of range normalizer initialized to given min and max values.- Parameters:
 min-max-
 
 - 
 - 
Method Details
- 
apply
Performs normalization on the given inputs. x = (x-min) / (max-min)- Parameters:
 dataSet- data set to normalize
 - 
scaleInput
Description copied from class:AbstractScalerNormalize input of deployed model- Specified by:
 scaleInputin classAbstractScaler- Parameters:
 input-
 
 -