Skip navigation links
A B C D E F G H I K L M N O P R S T U V W X Z 

A

absMax(Tensor, Tensor) - Static method in class deepnetts.util.Tensors
Returns tensors with max value for each component of input tensors.
absMax(float[], float[]) - Static method in class deepnetts.util.Tensors
Returns array with max values for each position in the given input vectors.
absMin(Tensor, Tensor) - Static method in class deepnetts.util.Tensors
 
absMin(float[], float[]) - Static method in class deepnetts.util.Tensors
 
absPrime(float) - Static method in class deepnetts.net.layers.activation.MathFunctions
First derivative of the abs function.
AbstractLayer - Class in deepnetts.net.layers
Base class for different types of layers.
AbstractLayer(ActivationType) - Constructor for class deepnetts.net.layers.AbstractLayer
 
AbstractOptimizer - Class in deepnetts.net.train.opt
Skeletal implementation of the Optimizer interface to minimize effort to implement specific optimizers.
AbstractOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.AbstractOptimizer
 
AbstractScaler - Class in deepnetts.data.norm
Base class to simplify implementation of custom normalization procedure.
AbstractScaler() - Constructor for class deepnetts.data.norm.AbstractScaler
 
accept(int, int) - Method in interface deepnetts.util.RangeConsumer
 
accuracy - Variable in class deepnetts.eval.ClassificationMetrics.Stats
 
ActivationFunction - Interface in deepnetts.net.layers.activation
Common base interface for all activation functions used in layers.
ActivationType - Enum in deepnetts.net.layers.activation
Supported types of activation functions.
AdaDeltaOptimizer - Class in deepnetts.net.train.opt
Implementation of ADADELTA Optimizer which is a modification od AdaGrad that uses only a limited window or previous gradients.
AdaDeltaOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.AdaDeltaOptimizer
 
AdaGradOptimizer - Class in deepnetts.net.train.opt
Implementation of ADAGRAD Optimizer , which uses sum of squared previous gradients to adjust a global learning rate for each weight.
AdaGradOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.AdaGradOptimizer
 
AdamOptimizer - Class in deepnetts.net.train.opt
Implementation of Adam optimizer which is a variation of RmsProp which includes momentum-like factor.
AdamOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.AdamOptimizer
 
add(String, T...) - Method in class deepnetts.automl.Parameters
 
add(String, List<T>) - Method in class deepnetts.automl.Parameters
Adds a list of possible values for specified parameter name
add(Parameter) - Method in class deepnetts.automl.Parameters
 
add(ExampleImage) - Method in class deepnetts.data.ImageSet
Adds an example image that will be used to train deep learning model to this set.
add(float[], float[]) - Method in class deepnetts.eval.RootMeanSquaredError
 
add(float, int) - Method in class deepnetts.util.Tensor
 
add(float, int, int) - Method in class deepnetts.util.Tensor
Adds specified value to matrix value at position x, y
add(float, int, int, int) - Method in class deepnetts.util.Tensor
 
add(float, int, int, int, int) - Method in class deepnetts.util.Tensor
 
add(Tensor) - Method in class deepnetts.util.Tensor
Adds specified tensor t to this tensor.
add(float[], float[]) - Static method in class deepnetts.util.Tensors
Adds given vector and store result in first.
addConvolutionalLayer(int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given number of channels(filters), with default 3x3 filter size and default activation function.
addConvolutionalLayer(int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given number of channels(filters), with given activation function type and default 3x3 filter size.
addConvolutionalLayer(int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given number of channels(filters), with given filter size (same width and height) and default activation function.
addConvolutionalLayer(int, int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given number of channels(filters), with given filter size (same width and height) and given type of activation function.
addConvolutionalLayer(int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given number of channels(filters), with given width and height of convolutional filter and default type of activation function.
addConvolutionalLayer(int, Filter) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given number of channels(filters), with given settings of a convolutional filter and default type of activation function.
addConvolutionalLayer(int, int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given width and height of convolutional filters, given number of channels(filters) and stride(filter step), and default type of activation function.
addConvolutionalLayer(int, Filter, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given number of channels(filters), with given settings of a convolutional filter and given type of activation function.
addConvolutionalLayer(int, int, int, int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a convolutional layer with the given width and height of convolutional filters, given number of channels(filters) and stride(filter step), and given type of activation function.
addFullyConnectedLayer(int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds fully connected layer with specified width and default activation function.
addFullyConnectedLayer(int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds fully connected layer with specified width and activation function.
addFullyConnectedLayer(int) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Adds to the network a fully connected layer with specified width and Relu activation function by default.
addFullyConnectedLayer(int, ActivationType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Adds fully connected addLayer with specified width and activation function to the network.
addHiddenFullyConnectedLayers(int...) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Adds to the network several hidden fully connected layers with specified widths and default hidden activation function by default.
addHiddenFullyConnectedLayers(ActivationType, int...) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Adds fully connected hidden layers with widths given in layerWidths param and given activation function type.
addInputLayer(int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Input layer with specified width and height, and 3 channels by default.
addInputLayer(int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Input layer with specified width, height and number of channels (depth).
addInputLayer(int) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Adds input layer with the specified layerWidth (number of inputs) to the network.
addLayer(AbstractLayer) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a given layer to the network.
addLayer(AbstractLayer) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Adds custom layer to this network (which inherits from AbstractLayer)
addListener(TrainingListener) - Method in class deepnetts.net.train.BackpropagationTrainer
Adds training listener to this trainer.
addMaxPoolingLayer(int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a max pooling layer with given filter size and stride(filter step).
addMaxPoolingLayer(int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
 
addMaxPoolingLayer(int, int, int) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a max pooling layer with given filter size and stride(filter step).Max pooling layer comes after convolutional layer and reduces the dimensions of the input received from the previous layer.Typically filter sizes of 2 are used, which effectively halves the dimensions of the input from the previous layer.
addMaxPoolingLayer(Filter) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds a max pooling layer with the given filter settings.Max pooling layer comes after convolutional layer and reduces the dimensions of the input received from the previous layer.
addOutputLayer(int, Class<? extends OutputLayer>) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds output layer to the neural network with specified width (number of outputs) and layer class.
addOutputLayer(int, ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Adds output layer to the neural network with specified width (number of outputs) and activation function type.
addOutputLayer(int, ActivationType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Adds output layer to the neural network with specified width (number of outputs) and activation function type.
addPatternError(float[], float[]) - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
Calculates error for given actual and target patterns and adds that error to total error.
addPatternError(float[], float[]) - Method in class deepnetts.net.loss.CrossEntropyLoss
Calculates and returns error vector for specified actual and target outputs.
addPatternError(float[], float[]) - Method in interface deepnetts.net.loss.LossFunction
Calculates pattern error for singe pattern for the specified predicted and target outputs, adds the error to total error, and returns the pattern error.
addPatternError(float[], float[]) - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
Adds output error vector for the given predicted and target output vectors to total error sum and returns and error vector.
addRegularizationSum(float) - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
 
addRegularizationSum(float) - Method in class deepnetts.net.loss.CrossEntropyLoss
 
addRegularizationSum(float) - Method in interface deepnetts.net.loss.LossFunction
Adds specified regularization sum to total loss.
addRegularizationSum(float) - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
Add regularization sum to total loss
apply(DataSet<MLDataItem>) - Method in class deepnetts.data.norm.DecimalScaler
Performs normalization on the given inputs.
apply(DataSet<MLDataItem>) - Method in class deepnetts.data.norm.MaxScaler
Performs normalization on the given inputs.
apply(DataSet<MLDataItem>) - Method in class deepnetts.data.norm.MinMaxScaler
Performs normalization on the given inputs.
apply(DataSet<MLDataItem>) - Method in class deepnetts.data.norm.RangeScaler
Performs normalization on the given inputs.
apply(DataSet<MLDataItem>) - Method in class deepnetts.data.norm.Standardizer
 
apply(T) - Method in interface deepnetts.data.Preprocessing
 
apply(Tensor, int) - Method in interface deepnetts.net.layers.activation.ActivationFunction
 
apply(Tensor, int, int) - Method in interface deepnetts.net.layers.activation.ActivationFunction
 
apply(Tensor, int) - Method in class deepnetts.net.layers.activation.LeakyRelu
 
apply(Tensor, int, int) - Method in class deepnetts.net.layers.activation.LeakyRelu
 
apply(Tensor, int) - Method in class deepnetts.net.layers.activation.Linear
 
apply(Tensor, int, int) - Method in class deepnetts.net.layers.activation.Linear
 
apply(Tensor, int) - Method in class deepnetts.net.layers.activation.Relu
 
apply(Tensor, int, int) - Method in class deepnetts.net.layers.activation.Relu
 
apply(Tensor, int) - Method in class deepnetts.net.layers.activation.Sigmoid
 
apply(Tensor, int, int) - Method in class deepnetts.net.layers.activation.Sigmoid
 
apply(Tensor, int) - Method in class deepnetts.net.layers.activation.Tanh
 
apply(Tensor, int, int) - Method in class deepnetts.net.layers.activation.Tanh
 
apply(Tensor) - Method in class deepnetts.util.ImagePreprocessing
 
apply(Function<Float, Float>) - Method in class deepnetts.util.Tensor
 
applyWeightChanges() - Method in class deepnetts.net.layers.AbstractLayer
Applies weight changes to current weights Must be diferent for convolutional does nothing for MaxPooling Same for FullyConnected and OutputLayer
applyWeightChanges() - Method in class deepnetts.net.layers.ConvolutionalLayer
Apply weight changes calculated in backward pass
applyWeightChanges() - Method in class deepnetts.net.layers.FlattenLayer
 
applyWeightChanges() - Method in class deepnetts.net.layers.FullyConnectedLayer
 
applyWeightChanges() - Method in class deepnetts.net.layers.InputLayer
This method does nothing in input layer.
applyWeightChanges() - Method in class deepnetts.net.layers.MaxPoolingLayer
Does nothing for pooling layer since it does not have weights It just propagates deltas from next layer to previous through connections that had max activation in forward pass
applyWeightChanges() - Method in class deepnetts.net.layers.OutputLayer
Applies weight changes after one learning iteration or batch
applyWeightChanges() - Method in class deepnetts.net.NeuralNetwork
Applies calculated weight changes to all layers.
asJson() - Method in class deepnetts.net.train.TrainingResult
 
AugmentImagesTest - Class in deepnetts.util
just move 2(x) pix to left right up down
AugmentImagesTest() - Constructor for class deepnetts.util.AugmentImagesTest
 
average(ClassificationMetrics[]) - Static method in class deepnetts.eval.ClassificationMetrics
 

B

BackpropagationTrainer - Class in deepnetts.net.train
Backpropagation training algorithm for feed forward and convolutional neural networks.
BackpropagationTrainer(NeuralNetwork) - Constructor for class deepnetts.net.train.BackpropagationTrainer
Creates an instance of BackpropagationTrainer for the given neural network to train.
BackpropagationTrainer(Properties) - Constructor for class deepnetts.net.train.BackpropagationTrainer
Creates an instance of BackpropagationTrainer with the given properties.
backward() - Method in class deepnetts.net.layers.AbstractLayer
This method should implement backward pass in subclasses
backward() - Method in class deepnetts.net.layers.ConvolutionalLayer
Backward pass for convolutional layer tweaks the weights in filters.
backward() - Method in class deepnetts.net.layers.FlattenLayer
 
backward() - Method in class deepnetts.net.layers.FullyConnectedLayer
 
backward() - Method in class deepnetts.net.layers.InputLayer
This method does nothing in the input layer, and should never be called.
backward() - Method in interface deepnetts.net.layers.Layer
Performs weight parameters adjustment in backward pass during training of a neural network.
backward() - Method in class deepnetts.net.layers.MaxPoolingLayer
backward pass for a max(x, y) operation has a simple interpretation as only routing the gradient to the input that had the highest value in the forward pass.
backward() - Method in class deepnetts.net.layers.OutputLayer
This method implements backward pass for the output layer.
backward() - Method in class deepnetts.net.layers.SoftmaxOutputLayer
 
backward() - Method in class deepnetts.net.NeuralNetwork
Performs a backward bass across all layers in neural network, which is the calculation of corrections for the network internal parameters (weights).
balanceUpsample(ImageSet, Map<String, Integer>) - Static method in class deepnetts.util.ImageSetUtils
Balance specified data set by adding random images of each class, to get equal number of examples for each class.
BinaryCrossEntropyLoss - Class in deepnetts.net.loss
Cross Entropy Loss is a loss function used for binary classification tasks (two classes, single output which represents probability ).
BinaryCrossEntropyLoss(NeuralNetwork) - Constructor for class deepnetts.net.loss.BinaryCrossEntropyLoss
 
bins() - Method in class deepnetts.util.StatUtils.Histogram
 
binWidth() - Method in class deepnetts.util.StatUtils.Histogram
 
BoundingBox - Class in deepnetts.util
 
BoundingBox(int, int, int, int, int, float) - Constructor for class deepnetts.util.BoundingBox
 
BoundingBox(int, int, int, int) - Constructor for class deepnetts.util.BoundingBox
 
BoundingBox(int, int, int, int, int) - Constructor for class deepnetts.util.BoundingBox
 
BoundingBox(int, int, int, int, int, String, float) - Constructor for class deepnetts.util.BoundingBox
 
build() - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Builds an instance of ConvolutionalNetwork with settings specified in this builder.
build() - Method in class deepnetts.net.FeedForwardNetwork.Builder
Builds an instance of FeedForwardNetwork with settings specified in this builder.
build() - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
 
builder() - Static method in class deepnetts.net.ConvolutionalNetwork
Returns a builder for the ConvolutionalNetwork
Builder() - Constructor for class deepnetts.net.ConvolutionalNetwork.Builder
 
builder() - Static method in class deepnetts.net.FeedForwardNetwork
Returns a builder for the FeedForwardNetwork
Builder() - Constructor for class deepnetts.net.FeedForwardNetwork.Builder
 
builder() - Static method in class deepnetts.net.train.KFoldCrossValidation
 
Builder() - Constructor for class deepnetts.net.train.KFoldCrossValidation.Builder
 

C

calculate(float) - Method in class deepnetts.net.train.opt.AbstractOptimizer
 
calculateCellsPerThread(int, int) - Static method in class deepnetts.util.DeepNettsThreadPool
 
calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.AdaDeltaOptimizer
 
calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.AdaGradOptimizer
 
calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.AdamOptimizer
 
calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.MomentumOptimizer
 
calculateDeltaBias(float, int) - Method in interface deepnetts.net.train.opt.Optimizer
 
calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.RmsPropOptimizer
 
calculateDeltaBias(float, int) - Method in class deepnetts.net.train.opt.SgdOptimizer
 
calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.AdaDeltaOptimizer
 
calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.AdaGradOptimizer
 
calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.AdamOptimizer
 
calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.MomentumOptimizer
 
calculateDeltaWeight(float, int...) - Method in interface deepnetts.net.train.opt.Optimizer
 
calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.RmsPropOptimizer
 
calculateDeltaWeight(float, int...) - Method in class deepnetts.net.train.opt.SgdOptimizer
 
call() - Method in class deepnetts.util.CallableIntConsumer
 
call() - Method in class deepnetts.util.CallableRangeConsumer
 
CallableIntConsumer - Class in deepnetts.util
Callable int consumer.
CallableIntConsumer(int, int, IntConsumer) - Constructor for class deepnetts.util.CallableIntConsumer
 
CallableRangeConsumer - Class in deepnetts.util
Callable range consumer.
CallableRangeConsumer(int, int, RangeConsumer) - Constructor for class deepnetts.util.CallableRangeConsumer
 
CenterOnWhiteBackground - Class in deepnetts.util
Center images on backgounds and save at target path.
CenterOnWhiteBackground() - Constructor for class deepnetts.util.CenterOnWhiteBackground
 
checkLicense() - Static method in class deepnetts.core.DeepNetts
Validates the Deep Netts license.
checkLicense() - Method in class deepnetts.util.LicenseChecker
 
ClassificationMetrics - Class in deepnetts.eval
Various metrics that tell us how good is a classifier.
ClassificationMetrics(ConfusionMatrix) - Constructor for class deepnetts.eval.ClassificationMetrics
Constructs a new classification metrics from specified confusion matrix.
ClassificationMetrics(ConfusionMatrix, String, int) - Constructor for class deepnetts.eval.ClassificationMetrics
Constructs a new classification metrics of a single class for multi class classification.
ClassificationMetrics(int, int, int, int) - Constructor for class deepnetts.eval.ClassificationMetrics
Constructs a new classification metrics using specified arguments.
ClassificationMetrics.Stats - Class in deepnetts.eval
Average values of commonly used classification metrics.
ClassifierEvaluator - Class in deepnetts.eval
Evaluation method for binary and multi-class classifiers.
ClassifierEvaluator() - Constructor for class deepnetts.eval.ClassifierEvaluator
 
clone() - Method in class deepnetts.util.Tensor
 
COL_IDX - Static variable in interface deepnetts.net.train.opt.Optimizer
 
COL_IDX - Static variable in class deepnetts.util.Shape
 
ColorUtils - Class in deepnetts.util
 
ColumnType - Enum in deepnetts.util
 
COMPANY - Static variable in class deepnetts.util.LicenseChecker
 
ConfusionMatrix - Class in deepnetts.eval
Confusion matrix contains raw classifier evaluation results.
ConfusionMatrix(String[]) - Constructor for class deepnetts.eval.ConfusionMatrix
Creates a new confusion matrix for specified class labels
ConvolutionalLayer - Class in deepnetts.net.layers
Convolutional layer performs image convolution operation on outputs of a previous layer using filters.
ConvolutionalLayer(int, int, int) - Constructor for class deepnetts.net.layers.ConvolutionalLayer
Create a new instance of convolutional layer with specified number of channels filter size, default padding (filter-1)/2, and default stride stride value 1, and specified number of channels.
ConvolutionalLayer(int, Filter) - Constructor for class deepnetts.net.layers.ConvolutionalLayer
 
ConvolutionalLayer(int, Filter, ActivationType) - Constructor for class deepnetts.net.layers.ConvolutionalLayer
 
ConvolutionalLayer(int, int, int, int, ActivationType) - Constructor for class deepnetts.net.layers.ConvolutionalLayer
 
ConvolutionalNetwork - Class in deepnetts.net
Convolutional neural network is an extension of feed forward network, which can include 2D and 3D adaptive preprocessing layers (Convolutional and MaxPooling layer), which is specialized to learn to recognize features in images.
ConvolutionalNetwork.Builder - Class in deepnetts.net
Builder for a convolutional neural network.
copy() - Method in class deepnetts.util.Tensor
 
copy(Tensor, Tensor) - Static method in class deepnetts.util.Tensors
 
copy(float[], float[]) - Static method in class deepnetts.util.Tensors
 
copyFrom(float[]) - Method in class deepnetts.util.Tensor
 
copyOf(float[]) - Static method in class deepnetts.util.Tensors
 
correlation(float[], float[]) - Static method in class deepnetts.util.StatUtils
Calculates and returns Pearson correlation coefficient for the given arrays.
correlationCoefficient - Variable in class deepnetts.eval.ClassificationMetrics.Stats
 
correlationMatrix(float[][]) - Static method in class deepnetts.util.StatUtils
 
count() - Method in class deepnetts.util.DescriptiveStatistics
 
countByClasses() - Method in class deepnetts.data.ImageSet
 
countMissingValues(int) - Method in class deepnetts.data.TabularDataSet
 
countMissingValues() - Method in class deepnetts.data.TabularDataSet
 
create(ActivationType) - Static method in interface deepnetts.net.layers.activation.ActivationFunction
Creates and returns specified type of activation function.
create(OptimizerType, AbstractLayer) - Static method in interface deepnetts.net.train.opt.Optimizer
Factory method to create different types of optimizers
create(int, int, float[]) - Static method in class deepnetts.util.Tensor
Factory method for creating tensor instance,
create(int, int, int, float[]) - Static method in class deepnetts.util.Tensor
 
create(int, int, int, int, float[]) - Static method in class deepnetts.util.Tensor
 
createConvolutionalNetworkFromJson(JSONObject) - Static method in class deepnetts.util.FileIO
 
createDataSetFromRawImages(String, String, int, int, boolean) - Static method in class deepnetts.util.ImageSetUtils
Creates image data set from raw images by resizing and randomly croping to target dimensions.
createFeedForwardNetworkFromJson(JSONObject) - Static method in class deepnetts.util.FileIO
 
createFrom(ConfusionMatrix) - Static method in class deepnetts.eval.ClassificationMetrics
Creates classification metrics from the given confusion matrix.
createFromFile(String, Class<T>) - Static method in class deepnetts.util.FileIO
 
createFromFile(File, Class<T>) - Static method in class deepnetts.util.FileIO
 
createFromFile(File) - Static method in class deepnetts.util.FileIO
 
createFromJson(String) - Static method in class deepnetts.util.FileIO
 
createFromJson(File) - Static method in class deepnetts.util.FileIO
 
createFromJson(JSONObject) - Static method in class deepnetts.util.FileIO
 
CreateImageIndex - Class in deepnetts.util
 
CreateImageIndex() - Constructor for class deepnetts.util.CreateImageIndex
 
createImageIndex(String) - Static method in class deepnetts.util.ImageSetUtils
Creates an index file with list of all files in all subdirectories and write them into single index.txt file.
createIndexFile(HashMap<File, BufferedImage>, String, boolean) - Static method in class deepnetts.util.ImageUtils
 
CreateLabelsIndex - Class in deepnetts.util
 
CreateLabelsIndex() - Constructor for class deepnetts.util.CreateLabelsIndex
 
createLabelsIndex(String) - Static method in class deepnetts.util.ImageSetUtils
Creates a file with list of labels/categories from subdirectories at the specified given path.
createNeuralNetwork(Properties) - Method in class deepnetts.automl.FeedForwardNetworkFactory
 
createNeuralNetwork(Properties) - Method in interface deepnetts.automl.NetworkFactory
Creates and returns a neural network of specified type
createRandomlyCroppedImages(String, String, int, int, int) - Static method in class deepnetts.util.ImageSetUtils
 
createSearchSpace() - Method in class deepnetts.automl.Parameters
Returns parameters search space - all possible combination of all given parameter values.
createsTrainingSnaphots() - Method in class deepnetts.net.train.BackpropagationTrainer
Returns true if network creates training snapshots, false otherwise.
createSubSampledImageIndex(String, String, int, boolean) - Static method in class deepnetts.util.ImageSetUtils
Copies specified number of samples of each class from
cropAtCornersAndCenter(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
Returns five crops of a given image: four from each corner and one at center
CrossEntropyLoss - Class in deepnetts.net.loss
Average Cross Entropy Loss function commonly used for multi class classification problems.
CrossEntropyLoss(NeuralNetwork) - Constructor for class deepnetts.net.loss.CrossEntropyLoss
 
CrossEntropyLoss(int) - Constructor for class deepnetts.net.loss.CrossEntropyLoss
 
CsvFormat - Class in deepnetts.util
Various options for CSV file format including delimiter, column names and column types.
CsvFormat() - Constructor for class deepnetts.util.CsvFormat
 

D

DataSets - Class in deepnetts.data
Data set utility methods ans constants.
DataSets() - Constructor for class deepnetts.data.DataSets
 
DecimalScaler - Class in deepnetts.data.norm
Decimal scale normalization for the given data set.
DecimalScaler(DataSet<MLDataItem>) - Constructor for class deepnetts.data.norm.DecimalScaler
Creates a new instance of max normalizer initialized to max values in given data set.
DeepNetts - Class in deepnetts.core
Global configuration and settings for Deep Netts Engine.
deepnetts.automl - package deepnetts.automl
Support for automatically building deep learning models using hyper-parameter search.
deepnetts.core - package deepnetts.core
Core engine configuration and settings and runtime properties.
deepnetts.data - package deepnetts.data
Data structures to store example data used for building machine learning models.
deepnetts.data.norm - package deepnetts.data.norm
Data normalization methods, used to scale data to specific range, in order to make them suitable for use by a neural network.
deepnetts.eval - package deepnetts.eval
Evaluation procedures for machine learning models, used to estimate how good models are performing when given new data that (that was not used for training).
deepnetts.net - package deepnetts.net
Neural network architectures with their corresponding builders.
deepnetts.net.layers - package deepnetts.net.layers
Neural network layers, which are main building blocks of a neural network.
deepnetts.net.layers.activation - package deepnetts.net.layers.activation
Activation functions for neural network layers.
deepnetts.net.loss - package deepnetts.net.loss
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
deepnetts.net.train - package deepnetts.net.train
Training algorithms and related utilities.
deepnetts.net.train.opt - package deepnetts.net.train.opt
Optimization methods used by training algorithm.
deepnetts.net.weights - package deepnetts.net.weights
Weights randomization techniques, used for initializing layer's internal parameters.
deepnetts.util - package deepnetts.util
Various utility classes including Tensor, image operations, multithreading, exceptions etc.
DeepNettsException - Exception in deepnetts.util
 
DeepNettsException() - Constructor for exception deepnetts.util.DeepNettsException
Creates a new instance of JDeepNettsException without detail message.
DeepNettsException(String) - Constructor for exception deepnetts.util.DeepNettsException
Constructs an instance of JDeepNettsException with the specified detail message.
DeepNettsException(String, Throwable) - Constructor for exception deepnetts.util.DeepNettsException
 
DeepNettsException(Throwable) - Constructor for exception deepnetts.util.DeepNettsException
 
DeepNettsLogManager - Class in deepnetts.util
 
DeepNettsLogManager() - Constructor for class deepnetts.util.DeepNettsLogManager
 
DeepNettsRunner - Class in deepnetts.util
 
DeepNettsRunner() - Constructor for class deepnetts.util.DeepNettsRunner
 
DeepNettsThreadPool - Class in deepnetts.util
Dedicated thread pool for Deep Netts Engine.
DeleteAugmentImages - Class in deepnetts.util
just move 2(x) pix to left right up down
DeleteAugmentImages() - Constructor for class deepnetts.util.DeleteAugmentImages
 
DELIMITER_COMMA - Static variable in class deepnetts.data.DataSets
 
DELIMITER_SEMICOLON - Static variable in class deepnetts.data.DataSets
 
DELIMITER_SPACE - Static variable in class deepnetts.data.DataSets
 
DELIMITER_TAB - Static variable in class deepnetts.data.DataSets
 
deNormalizeInputs(Tensor) - Method in class deepnetts.data.norm.MaxScaler
 
deNormalizeOutputs(Tensor) - Method in class deepnetts.data.norm.MaxScaler
De-normalize given output vector in-place.
DEPTH_IDX - Static variable in interface deepnetts.net.train.opt.Optimizer
 
DEPTH_IDX - Static variable in class deepnetts.util.Shape
 
DescriptiveStatistics - Class in deepnetts.util
 
DescriptiveStatistics() - Constructor for class deepnetts.util.DescriptiveStatistics
 
descriptiveStatistics(float[]) - Static method in class deepnetts.util.StatUtils
 
detectCsvFormat(String) - Static method in class deepnetts.data.DataSets
 
DEVICE_ID - Static variable in class deepnetts.util.LicenseChecker
 
div(float) - Method in class deepnetts.util.Tensor
Divide all values in this tensor with specified value.
div(float[]) - Method in class deepnetts.util.Tensor
 
div(Tensor) - Method in class deepnetts.util.Tensor
 
div(float[], float) - Static method in class deepnetts.util.Tensors
 
div(float[], float[]) - Static method in class deepnetts.util.Tensors
 
DIVIDE_AND_CONQUER - Static variable in class deepnetts.automl.HyperParameterSearch
 

E

EMAIL - Static variable in class deepnetts.util.LicenseChecker
 
EPOCH_FINISHED - Static variable in class deepnetts.net.train.TrainingEvent
Specifies that training epoch has finished.
EPOCH_STARTED - Static variable in class deepnetts.net.train.TrainingEvent
Specifies that training epoch has started.
EPS - Static variable in interface deepnetts.net.train.opt.Optimizer
Smoothing term to prevent division by zero if sqr grad sum becomes zero 1e-8 should be also tried https://d2l.ai/chapter_optimization/adagrad.html 1e-6 The value to use is 1e-6, 1e-8, Keras uses 1e-7 for adam
equals(Object) - Method in class deepnetts.automl.Parameter
 
equals(Object) - Method in class deepnetts.util.Tensor
 
equals(Tensor, float) - Method in class deepnetts.util.Tensor
 
equalsName(String) - Method in enum deepnetts.net.layers.LayerType
 
equalsName(String) - Method in enum deepnetts.net.loss.LossType
 
equalsName(String) - Method in enum deepnetts.net.NetworkType
 
evaluate(NeuralNetwork, DataSet<? extends MLDataItem>) - Method in class deepnetts.eval.ClassifierEvaluator
Performs classifier evaluation and returns classification performance metrics.
evaluate(NeuralNetwork, DataSet<? extends MLDataItem>) - Method in class deepnetts.eval.RegresionEvaluator
 
evaluateClassifier(NeuralNetwork<?>, DataSet<? extends MLDataItem>) - Static method in class deepnetts.eval.Evaluators
 
evaluateRegressor(NeuralNetwork<?>, DataSet<? extends MLDataItem>) - Static method in class deepnetts.eval.Evaluators
Evaluates specified neural network with test set, as a regression model and returns basic regression evauation metrics.
evaluator(Evaluator<NeuralNetwork, DataSet<? extends MLDataItem>>) - Method in class deepnetts.automl.HyperParameterSearch
 
evaluator(Evaluator<NeuralNetwork, DataSet<? extends MLDataItem>>) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
 
Evaluators - Class in deepnetts.eval
Utility methods for evaluating machine learning models.
ExampleImage - Class in deepnetts.data
Example image to train a deep learning model.
ExampleImage(String, String) - Constructor for class deepnetts.data.ExampleImage
 
ExampleImage(File, String) - Constructor for class deepnetts.data.ExampleImage
Creates an instance of new example image with specified image and label Loads image from specified file and creates matrix structures with color information
ExampleImage(BufferedImage, String) - Constructor for class deepnetts.data.ExampleImage
 
ExampleImage(BufferedImage, String, int) - Constructor for class deepnetts.data.ExampleImage
 
ExampleImage(File, BufferedImage, String) - Constructor for class deepnetts.data.ExampleImage
 
ExampleImage(BufferedImage) - Constructor for class deepnetts.data.ExampleImage
 
ExampleImage(BufferedImage, String, int, int) - Constructor for class deepnetts.data.ExampleImage
 

F

FALSE_NEGATIVE - Static variable in class deepnetts.eval.ConfusionMatrix
A label for items falsely classified as negative, which are actually positive.
FALSE_POSITIVE - Static variable in class deepnetts.eval.ConfusionMatrix
A label for items falsely classified as positive, which are actually negative.
FeedForwardNetwork - Class in deepnetts.net
Feed forward neural network architecture, also known as Multi Layer Perceptron.
FeedForwardNetwork.Builder - Class in deepnetts.net
Builder of a FeedForwardNetwork instance.
FeedForwardNetworkFactory - Class in deepnetts.automl
Factory for FeedForwardNetwork.
FeedForwardNetworkFactory() - Constructor for class deepnetts.automl.FeedForwardNetworkFactory
 
FILE_TRAINING_PROP - Static variable in class deepnetts.util.DeepNettsRunner
 
FileIO - Class in deepnetts.util
File utilities for saving and loading neural networks.
fill(float) - Method in class deepnetts.util.Tensor
Fills the entire tensor with specified value.
fill(float[], float) - Static method in class deepnetts.util.Tensor
 
fillFourthDim(Tensor, int, float) - Static method in class deepnetts.util.Tensors
 
Filter - Class in deepnetts.net.layers
Settings of a convolutional filter which is used to learn to detect pixel patterns.
Filter(int) - Constructor for class deepnetts.net.layers.Filter
 
Filter(int, int) - Constructor for class deepnetts.net.layers.Filter
 
FlattenLayer - Class in deepnetts.net.layers
Just transform outputs from prev 3d layer into flat 1d tensor in formward pass backward pass will be same as backward for fc, and for 3d layers backwardFromFc Automaticly add after 2d or 3d layer to transition to fc layers.
FlattenLayer() - Constructor for class deepnetts.net.layers.FlattenLayer
 
flipHorizontal(BufferedImage) - Static method in class deepnetts.util.ImageUtils
 
flipVertical(BufferedImage) - Static method in class deepnetts.util.ImageUtils
 
forward() - Method in class deepnetts.net.layers.AbstractLayer
This method should implement forward pass in subclasses
forward() - Method in class deepnetts.net.layers.ConvolutionalLayer
Forward pass for convolutional layer.
forward() - Method in class deepnetts.net.layers.FlattenLayer
 
forward() - Method in class deepnetts.net.layers.FullyConnectedLayer
 
forward() - Method in class deepnetts.net.layers.InputLayer
This method does nothing in the input layer, and should never be called.
forward() - Method in interface deepnetts.net.layers.Layer
Performs layer calculation in forward pass of a neural network.
forward() - Method in class deepnetts.net.layers.MaxPoolingLayer
Max pooling forward pass outputs the max value for each filter position.
forward() - Method in class deepnetts.net.layers.OutputLayer
This method implements forward pass for the output layer.
forward() - Method in class deepnetts.net.layers.SoftmaxOutputLayer
This method implements forward pass for the output layer.
FOURTH_DIM_IDX - Static variable in interface deepnetts.net.train.opt.Optimizer
 
fScore - Variable in class deepnetts.eval.ClassificationMetrics.Stats
 
FullyConnectedLayer - Class in deepnetts.net.layers
Fully connected layer is used as hidden layer in the neural network, and it has a single row of units/nodes/neurons connected to all neurons in previous and next layer.
FullyConnectedLayer(int) - Constructor for class deepnetts.net.layers.FullyConnectedLayer
Creates an instance of fully connected layer with specified width (number of neurons) and ReLU activation function.
FullyConnectedLayer(int, ActivationType) - Constructor for class deepnetts.net.layers.FullyConnectedLayer
Creates an instance of fully connected layer with specified width (number of neurons) and activation function type.

G

gaussian(float[], float, float) - Static method in class deepnetts.net.weights.RandomWeights
 
generateNoisyImage(int, int, int, String) - Static method in class deepnetts.util.ImageUtils
 
generateRandomColoredImages(int, int, int, String) - Static method in class deepnetts.util.ImageUtils
Generates a specified number of randomly full colored images of a specified size.
generateRandomFilledRectImages(int, int, int, String) - Static method in class deepnetts.util.ImageUtils
 
GenerateRandomNegative - Class in deepnetts.util
 
GenerateRandomNegative() - Constructor for class deepnetts.util.GenerateRandomNegative
 
get(String) - Method in class deepnetts.automl.Parameters
 
get(int, int) - Method in class deepnetts.eval.ConfusionMatrix
Returns a value of confusion matrix at specified position.
get(String) - Method in class deepnetts.util.Parameters
 
get(int) - Method in class deepnetts.util.Tensor
Gets value at specified index position.
get(int, int) - Method in class deepnetts.util.Tensor
Returns matrix value at row, col
get(int, int, int) - Method in class deepnetts.util.Tensor
Returns value at specified index [row, col, z].
get(int, int, int, int) - Method in class deepnetts.util.Tensor
 
getAccuracy() - Method in class deepnetts.eval.ClassificationMetrics
Percent of correct classifications (for both positive and negative classes).
getActivation() - Method in class deepnetts.net.layers.AbstractLayer
 
getActivationType() - Method in class deepnetts.net.layers.AbstractLayer
 
getAsProperties() - Method in class deepnetts.automl.Parameters.ParameterCombination
 
getBalancedAccuracy() - Method in class deepnetts.eval.ClassificationMetrics
Balanced accuracy is a good metric to use when data set is not balanced.
getBatchSize() - Method in class deepnetts.net.layers.AbstractLayer
 
getBatchSize() - Method in class deepnetts.net.train.BackpropagationTrainer
Batch size is number of training examples after which network's weights are adjusted.
getBestNetwork() - Method in class deepnetts.net.train.KFoldCrossValidation
 
getBestResult() - Method in class deepnetts.net.train.KFoldCrossValidation
 
getBiases() - Method in class deepnetts.net.layers.AbstractLayer
 
getBlue(int) - Static method in class deepnetts.util.ColorUtils
 
getBoolean(String) - Method in class deepnetts.util.Parameters
 
getBoolean(String) - Method in class deepnetts.util.TypedProperties
 
getBrightness() - Method in class deepnetts.data.ImageSet
 
getCheckpointEpochs() - Method in class deepnetts.net.train.BackpropagationTrainer
On how many epochs the snapshots of the trained network should be created.
getClassCount() - Method in class deepnetts.eval.ConfusionMatrix
 
getClassIdx() - Method in class deepnetts.eval.ClassificationMetrics
 
getClassLabel() - Method in class deepnetts.eval.ClassificationMetrics
Returns class label that these metric correspond to (used for multi class classification).
getClassLabels() - Method in class deepnetts.eval.ConfusionMatrix
 
getColorFor(float, float, float) - Static method in class deepnetts.util.ColorUtils
 
getCols() - Method in class deepnetts.util.Tensor
 
getColumnNames() - Method in class deepnetts.data.TabularDataSet
 
getColumnNames() - Method in class deepnetts.util.CsvFormat
 
getColumnTypes() - Method in class deepnetts.util.CsvFormat
 
getConfusionMatrix() - Method in class deepnetts.eval.ClassificationMetrics
Returns a confusion matrix that is used to generate these metrics.
getConfusionMatrix() - Method in class deepnetts.eval.ClassifierEvaluator
 
getCropCornersAndCenter() - Method in class deepnetts.data.ImageSet
 
getCurrentEpoch() - Method in class deepnetts.net.train.BackpropagationTrainer
Returns the current training epoch(iteration) of this trainer.
getDefault() - Static method in class deepnetts.util.RandomGenerator
 
getDelimiter() - Method in class deepnetts.data.ImageSet
 
getDelimiter() - Method in class deepnetts.util.CsvFormat
 
getDeltaBiases() - Method in class deepnetts.net.layers.AbstractLayer
 
getDeltas() - Method in class deepnetts.net.layers.AbstractLayer
 
getDeltas() - Method in interface deepnetts.net.layers.Layer
Returns layer deltas/errors (as a tensor).
getDeltaWeights() - Method in class deepnetts.net.ConvolutionalNetwork
Returns delta weights for all layers.
getDeltaWeights() - Method in class deepnetts.net.layers.AbstractLayer
 
getDepth() - Method in class deepnetts.net.layers.AbstractLayer
 
getDepth() - Method in class deepnetts.util.Tensor
 
getDim(int) - Method in class deepnetts.util.Shape
 
getDimensions() - Method in class deepnetts.util.Shape
 
getDouble(String) - Method in class deepnetts.util.TypedProperties
 
getDropout() - Method in class deepnetts.net.layers.FullyConnectedLayer
 
getDropout() - Method in class deepnetts.net.train.BackpropagationTrainer
Dropout is a technique to prevent overfitting, which skips adjusting weights for some neurons with given probability.
getEarlyStopping() - Method in class deepnetts.net.train.BackpropagationTrainer
Early stopping stops training if it starts converging slow, and prevents overfitting.
getEarlyStoppingMinLossChange() - Method in class deepnetts.net.train.BackpropagationTrainer
Early stopping stops training if the error/loss start converging to slow.
getEarlyStoppingPatience() - Method in class deepnetts.net.train.BackpropagationTrainer
How many epochs to wait to see if the loss is lowering to slow.
getEpochs() - Method in class deepnetts.net.train.TrainingResult
 
getErrorRate() - Method in class deepnetts.eval.ClassificationMetrics
A percent of wrong classifications/predictions made.
getEvaluationMetrics() - Method in class deepnetts.net.train.TrainingResult
 
getEvaluator() - Method in class deepnetts.automl.HyperParameterSearch
 
getExtendedLogging() - Method in class deepnetts.net.train.BackpropagationTrainer
Extended logging includes additional info for debugging the training.
getF1Score() - Method in class deepnetts.eval.ClassificationMetrics
Calculates and returns F1 score - a balance between recall and precision.
getFalseDiscoveryRate() - Method in class deepnetts.eval.ClassificationMetrics
When its actually no, how often it is classified as yes
getFalseNegative(int) - Method in class deepnetts.eval.ConfusionMatrix
 
getFalseNegative() - Method in class deepnetts.eval.ConfusionMatrix
How many positive items has been (falsely) classified as negative.
getFalseNegativeRate() - Method in class deepnetts.eval.ClassificationMetrics
When its actually yes, how often does it predicts no
getFalsePositive() - Method in class deepnetts.eval.ConfusionMatrix
Returns number of false positive classifications.
getFalsePositive(int) - Method in class deepnetts.eval.ConfusionMatrix
 
getFalsePositiveRate() - Method in class deepnetts.eval.ClassificationMetrics
When it's actually no, how often does it predict yes? FP/actual no
getFile() - Method in class deepnetts.data.ExampleImage
 
getFileHandler() - Method in class deepnetts.util.DeepNettsLogManager
 
getFilterDeltaWeights() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getFilterDepth() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getFilterHeight() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getFilterHeight() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
getFilters() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getFilterWidth() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getFilterWidth() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
getFlipHorizontal() - Method in class deepnetts.data.ImageSet
 
getFloat(String) - Method in class deepnetts.util.Parameters
 
getFloat(String) - Method in class deepnetts.util.TypedProperties
 
getFourthDim() - Method in class deepnetts.util.Tensor
 
getFScore(int) - Method in class deepnetts.eval.ClassificationMetrics
Balance between precision and recall.
getFStat() - Method in class deepnetts.eval.RegressionMetrics
 
getGradients() - Method in class deepnetts.net.layers.AbstractLayer
 
getGrayscale() - Method in class deepnetts.data.ImageSet
 
getGreen(int) - Static method in class deepnetts.util.ColorUtils
 
getGroups() - Method in class deepnetts.net.layers.Filter
 
getHeight() - Method in class deepnetts.data.ExampleImage
 
getHeight() - Method in class deepnetts.net.layers.AbstractLayer
 
getHeight() - Method in class deepnetts.net.layers.Filter
 
getHeight() - Method in class deepnetts.util.BoundingBox
 
getId() - Method in class deepnetts.util.BoundingBox
 
getImageType(File) - Static method in class deepnetts.util.ImageUtils
Returns the extension of the given image file.
getInput() - Method in class deepnetts.data.ExampleImage
 
getInput() - Method in interface deepnetts.data.MLDataItem
Returns an input for machine learning model of this item.
getInput() - Method in class deepnetts.data.TabularDataSet.Item
 
getInputLayer() - Method in class deepnetts.net.NeuralNetwork
Returns the input layer of this neural network.
getInstance() - Static method in class deepnetts.core.DeepNetts
Returns a singleton instance of a Deep Netts engine.The instance provides global configuration settings for the Deep Netts runtime.
getInstance() - Static method in class deepnetts.util.DeepNettsThreadPool
 
getInt(String) - Method in class deepnetts.automl.Parameters
 
getInt(String) - Method in class deepnetts.util.TypedProperties
 
getInteger(String) - Method in class deepnetts.util.Parameters
 
getInvertImages() - Method in class deepnetts.data.ImageSet
 
getIqr() - Method in class deepnetts.util.DescriptiveStatistics
 
getL1RegSum() - Method in class deepnetts.net.NeuralNetwork
Calculates and returns L1 regularization sum of the entire network (all layers included).
getL1Regularization() - Method in class deepnetts.net.layers.AbstractLayer
 
getL1WeightSum() - Method in class deepnetts.net.layers.AbstractLayer
 
getL1WeightSum() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getL1WeightSum() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
getL2RegSum() - Method in class deepnetts.net.NeuralNetwork
Calculates and returns L2 regularization sum of the entire network (all layers included).
getL2Regularization() - Method in class deepnetts.net.layers.AbstractLayer
 
getL2WeightSum() - Method in class deepnetts.net.layers.AbstractLayer
 
getL2WeightSum() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getL2WeightSum() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
getLabel() - Method in class deepnetts.data.ExampleImage
 
getLabel() - Method in class deepnetts.net.NeuralNetwork
Returns the label(name) of this neural network
getLabel() - Method in class deepnetts.util.BoundingBox
 
getLabelsCount() - Method in class deepnetts.data.ImageSet
 
getLayers() - Method in class deepnetts.net.NeuralNetwork
Gets layers of this neural network.
getLayersOutputs() - Method in class deepnetts.net.ConvolutionalNetwork
Returns outputs of all layers.
getLearningRate() - Method in class deepnetts.net.layers.AbstractLayer
 
getLearningRate() - Method in class deepnetts.net.train.BackpropagationTrainer
Learning rate controls the step size as a percent of the error to use for adjusting internal parameters(weights) of the neural network.
getLicenseProperties() - Method in class deepnetts.util.LicenseChecker
 
getLoss() - Method in class deepnetts.net.train.TrainingResult
 
getLossFunction() - Method in class deepnetts.net.NeuralNetwork
Returns a loss function of this network, which is used to calculate total network error during the training.
getLossType() - Method in class deepnetts.net.layers.OutputLayer
 
getMacroAverage() - Method in class deepnetts.eval.ClassifierEvaluator
 
getMacroAverage() - Method in class deepnetts.net.train.KFoldCrossValidation
 
getMatthewsCorrelationCoefficient() - Method in class deepnetts.eval.ClassificationMetrics
Calculates and returns the matthews corellation coefficient.
getMax() - Method in class deepnetts.automl.Range
 
getMax() - Method in class deepnetts.util.DescriptiveStatistics
 
getMaxEpochs() - Method in class deepnetts.net.train.BackpropagationTrainer
Returns the setting for maximum number of training epochs(iterations).
getMaxError() - Method in class deepnetts.eval.RegressionMetrics
 
getMaxError() - Method in class deepnetts.net.train.BackpropagationTrainer
Returns the setting for the stopping error threshold.
getMaxInputs() - Method in class deepnetts.data.norm.MaxScaler
 
getMaxOutputs() - Method in class deepnetts.data.norm.MaxScaler
 
getMean() - Method in class deepnetts.data.ImageSet
 
getMean() - Method in class deepnetts.util.DescriptiveStatistics
 
getMean() - Method in class deepnetts.util.ImagePreprocessing
 
getMeanAbsoluteError() - Method in class deepnetts.eval.RegressionMetrics
 
getMeanAbsolutePercentageError() - Method in class deepnetts.eval.RegressionMetrics
 
getMeanSquaredError() - Method in class deepnetts.eval.RegressionMetrics
Mean squared error is the average value of the sum of squared errors.
getMedian() - Method in class deepnetts.util.DescriptiveStatistics
 
getMetricsByClass() - Method in class deepnetts.eval.ClassifierEvaluator
 
getMin() - Method in class deepnetts.automl.Range
 
getMin() - Method in class deepnetts.util.DescriptiveStatistics
 
getMomentum() - Method in class deepnetts.net.layers.AbstractLayer
 
getMomentum() - Method in class deepnetts.net.train.BackpropagationTrainer
Momentum settings helps to avoid oscillations in weight changes and get more stable and faster training.
getName() - Method in class deepnetts.automl.Parameter
 
getName() - Method in class deepnetts.util.Parameter
 
getNetwork() - Method in class deepnetts.automl.HyperParameterSearch
 
getNeuralNetwork() - Method in class deepnetts.net.train.BackpropagationTrainer
Returns a neural network trained by this trainer.
getNextLayer() - Method in class deepnetts.net.layers.AbstractLayer
 
getNormalizer() - Method in class deepnetts.net.NeuralNetwork
Returns data normalization method that is applied to network's inputs.
getNumColumns() - Method in class deepnetts.util.CsvFormat
 
getNumInputs() - Method in class deepnetts.data.TabularDataSet
 
getNumOutputs() - Method in class deepnetts.data.TabularDataSet
 
getOptimizer() - Method in class deepnetts.net.layers.AbstractLayer
 
getOptimizer() - Method in class deepnetts.net.train.BackpropagationTrainer
 
getOptimizerType() - Method in class deepnetts.net.layers.AbstractLayer
 
getOriginalImageFromFile() - Method in class deepnetts.data.ExampleImage
 
getOutput(float[]) - Method in class deepnetts.net.FeedForwardNetwork
Deprecated. 
getOutput() - Method in class deepnetts.net.NeuralNetwork
Returns network's output.
getOutputErrors() - Method in class deepnetts.net.layers.OutputLayer
 
getOutputLabel(int) - Method in class deepnetts.net.NeuralNetwork
Gets a label of the i-th output this network.
getOutputLabels() - Method in class deepnetts.net.NeuralNetwork
Returns all labels for outputs of this network.
getOutputLayer() - Method in class deepnetts.net.NeuralNetwork
Returns the output layer of this network.
getOutputs() - Method in class deepnetts.net.layers.AbstractLayer
 
getOutputs() - Method in interface deepnetts.net.layers.Layer
Returns layer outputs (as a tensor).
getPadding() - Method in class deepnetts.net.layers.Filter
 
getParameters() - Method in class deepnetts.automl.HyperParameterSearch
 
getParameters() - Method in class deepnetts.automl.Parameters.ParameterCombination
 
getPrecision() - Method in class deepnetts.eval.ClassificationMetrics
What percent of those predicted as positive are really positive.
getPreprocessing() - Method in class deepnetts.net.NeuralNetwork
Gets preprocessing that needs to be performed before input is fed to this network.
getPrevDeltaBiases() - Method in class deepnetts.net.layers.AbstractLayer
 
getPrevDeltaWeights() - Method in class deepnetts.net.layers.AbstractLayer
 
getPrevlayer() - Method in class deepnetts.net.layers.AbstractLayer
 
getPrime(float) - Method in interface deepnetts.net.layers.activation.ActivationFunction
Returns the first derivative of activation function for specified output y
getPrime(float) - Method in class deepnetts.net.layers.activation.LeakyRelu
 
getPrime(float) - Method in class deepnetts.net.layers.activation.Linear
 
getPrime(float) - Method in class deepnetts.net.layers.activation.Relu
 
getPrime(float) - Method in class deepnetts.net.layers.activation.Sigmoid
 
getPrime(float) - Method in class deepnetts.net.layers.activation.Tanh
 
getProperties() - Method in class deepnetts.core.DeepNetts
Returns all the configuration properties for Deep Netts.
getProperties() - Method in class deepnetts.net.train.TrainingResult
 
getProperty(String) - Method in class deepnetts.core.DeepNetts
Returns a specified property of the Deep Netts runtime environment.
getQ1() - Method in class deepnetts.util.DescriptiveStatistics
 
getQ3() - Method in class deepnetts.util.DescriptiveStatistics
 
getR2() - Method in class deepnetts.eval.RegressionMetrics
Proportion of variance explained by the model.A value between 0 and 1, where 1 is the best and 0 worst.
getRandom() - Method in class deepnetts.util.RandomGenerator
 
getRandomNum() - Method in class deepnetts.automl.Range
 
getRange() - Method in class deepnetts.util.DescriptiveStatistics
 
getRank() - Method in class deepnetts.util.Tensor
Rank corresponds to number of dimensions in tensor.
getRecall() - Method in class deepnetts.eval.ClassificationMetrics
Ratio between those classified as positive compared to those that are actually positive.
getRed(int) - Static method in class deepnetts.util.ColorUtils
 
getResidualStandardError() - Method in class deepnetts.eval.RegressionMetrics
 
getResizeStrategy() - Method in class deepnetts.data.ImageSet
 
getResults() - Method in class deepnetts.automl.HyperParameterSearch
 
getRgbVector() - Method in class deepnetts.data.ExampleImage
 
getRootMeanSquaredError() - Method in class deepnetts.eval.RegressionMetrics
 
getRows() - Method in class deepnetts.util.Tensor
 
getScaleImages() - Method in class deepnetts.data.ImageSet
Returns flag that indicates wheather images should be scaled to specified dimensions while creating image set.
getScore() - Method in class deepnetts.util.BoundingBox
 
getSearchSpace() - Method in class deepnetts.automl.HyperParameterSearch
 
getShuffle() - Method in class deepnetts.net.train.BackpropagationTrainer
Returns shuffle flag which determines if training set should be shuffled before each epoch.
getSingleOutInput() - Method in class deepnetts.net.layers.OutputLayer
 
getSnapshotEpochs() - Method in class deepnetts.net.train.BackpropagationTrainer
On how many epochs to make training snapshots.
getSnapshotPath() - Method in class deepnetts.net.train.BackpropagationTrainer
Path to use for making snapshots - saving the current state of trained network during the training in order to be able to restore it from a training point if needed.
getSource() - Method in class deepnetts.net.train.TrainingEvent
Gets the source of the event.
getSpecificity() - Method in class deepnetts.eval.ClassificationMetrics
Specificity or true negative rate.
getSquaredErrorSum() - Method in class deepnetts.eval.RegressionMetrics
 
getStd() - Method in class deepnetts.util.DescriptiveStatistics
 
getStep() - Method in class deepnetts.automl.Range
 
getStopAccuracy() - Method in class deepnetts.net.train.BackpropagationTrainer
 
getStopError() - Method in class deepnetts.net.train.BackpropagationTrainer
Alias for getMaxError().
getStrategy() - Method in class deepnetts.automl.Range
 
getStride() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
getStride() - Method in class deepnetts.net.layers.Filter
 
getStride() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
getString(String) - Method in class deepnetts.util.Parameters
 
getString(String) - Method in class deepnetts.util.TypedProperties
 
getTargetColumnsNames() - Method in class deepnetts.data.ImageSet
Returns output/image labels.
getTargetColumnsNames() - Method in class deepnetts.data.TabularDataSet
 
getTargetOutput() - Method in class deepnetts.data.ExampleImage
 
getTargetOutput() - Method in interface deepnetts.data.MLDataItem
Returns target output for machine learning model of this item.
getTargetOutput() - Method in class deepnetts.data.TabularDataSet.Item
 
getTestSet() - Method in class deepnetts.data.TrainTestPair
 
getTestSet() - Method in class deepnetts.net.train.BackpropagationTrainer
Test set is used after the training to estimate performance of the trained model and generalization ability with new data.
getThreadCount() - Method in class deepnetts.util.DeepNettsThreadPool
 
getThreshold() - Method in class deepnetts.eval.ClassifierEvaluator
 
getTotal() - Method in class deepnetts.eval.ClassificationMetrics
Returns total number of classifications.
getTotal() - Method in class deepnetts.eval.RootMeanSquaredError
 
getTotal() - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
 
getTotal() - Method in class deepnetts.net.loss.CrossEntropyLoss
 
getTotal() - Method in interface deepnetts.net.loss.LossFunction
Returns the total error calculated by this loss function.
getTotal() - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
 
getTotalItems() - Method in class deepnetts.eval.ConfusionMatrix
 
getTrainer() - Method in class deepnetts.net.NeuralNetwork
Returns a training algorithm of this neural network.
getTrainer() - Method in interface deepnetts.net.train.TrainerProvider
 
getTrainingAccuracy() - Method in class deepnetts.net.train.BackpropagationTrainer
Accuracy metric which tells us a percent of correct predictions for training set.
getTrainingeSet() - Method in class deepnetts.data.TrainTestPair
 
getTrainingListener() - Method in class deepnetts.net.train.KFoldCrossValidation
 
getTrainingLoss() - Method in class deepnetts.net.train.BackpropagationTrainer
Total training error/loss at the current epoch.
getTrainingResults() - Method in class deepnetts.net.train.KFoldCrossValidation
 
getTrainingSet() - Method in class deepnetts.automl.HyperParameterSearch
 
getTranslate() - Method in class deepnetts.data.ImageSet
 
getTrueNegative() - Method in class deepnetts.eval.ConfusionMatrix
 
getTrueNegative(int) - Method in class deepnetts.eval.ConfusionMatrix
 
getTruePositive() - Method in class deepnetts.eval.ConfusionMatrix
Return true positive metric for binary classification.
getTruePositive(int) - Method in class deepnetts.eval.ConfusionMatrix
Returns true positive metric for specified class idx for multiclass classification.
getType() - Method in class deepnetts.net.train.TrainingEvent
Gets the type of the event.
getValidationAccuracy() - Method in class deepnetts.net.train.BackpropagationTrainer
Accuracy metric which tells us a percent of correct predictions for validation set.
getValidationLoss() - Method in class deepnetts.net.train.BackpropagationTrainer
Validation loss is an error calculated using validation set, used to prevent overfitting, and validate architecture and training settings.
getValue() - Method in class deepnetts.automl.Parameter
If it does not hold list but a single value
getValue(float) - Method in interface deepnetts.net.layers.activation.ActivationFunction
Returns the value of activation function for specified input x
getValue(float) - Method in class deepnetts.net.layers.activation.LeakyRelu
 
getValue(float) - Method in class deepnetts.net.layers.activation.Linear
 
getValue(float) - Method in class deepnetts.net.layers.activation.Relu
 
getValue(float) - Method in class deepnetts.net.layers.activation.Sigmoid
 
getValue(float) - Method in class deepnetts.net.layers.activation.Tanh
 
getValue() - Method in class deepnetts.util.Parameter
 
getValues() - Method in class deepnetts.automl.Parameter
Returns the list of possible values for this parameter
getValues() - Method in class deepnetts.util.Tensor
 
getVar() - Method in class deepnetts.util.DescriptiveStatistics
 
getWeights() - Method in class deepnetts.net.ConvolutionalNetwork
Returns weights from all layers in this network as a list of tensors.
getWeights() - Method in class deepnetts.net.layers.AbstractLayer
 
getWidth() - Method in class deepnetts.data.ExampleImage
 
getWidth() - Method in class deepnetts.net.layers.AbstractLayer
 
getWidth() - Method in class deepnetts.net.layers.Filter
 
getWidth() - Method in class deepnetts.util.BoundingBox
 
getWithStride(int[]) - Method in class deepnetts.util.Tensor
 
getX() - Method in class deepnetts.util.BoundingBox
 
getY() - Method in class deepnetts.util.BoundingBox
 
getZeroMeanPixels() - Method in class deepnetts.data.ImageSet
 
grayscale(BufferedImage) - Static method in class deepnetts.util.ImageUtils
Returns grayscale version of the given image.
GRID - Static variable in class deepnetts.automl.HyperParameterSearch
 
groups(int) - Method in class deepnetts.net.layers.Filter
 

H

handleEvent(TrainingEvent) - Method in class deepnetts.net.train.opt.AdaDeltaOptimizer
 
handleEvent(TrainingEvent) - Method in class deepnetts.net.train.opt.AdamOptimizer
 
handleEvent(TrainingEvent) - Method in class deepnetts.net.train.opt.LearningRateDecay
 
handleEvent(TrainingEvent) - Method in interface deepnetts.net.train.TrainingListener
Invoked when a training event occurs.
hashCode() - Method in class deepnetts.automl.Parameter
 
hashCode() - Method in class deepnetts.util.Tensor
 
hasMissingValues(int) - Method in class deepnetts.data.TabularDataSet
 
hasMissingValues() - Method in class deepnetts.data.TabularDataSet
 
he(float[], int) - Static method in class deepnetts.net.weights.RandomWeights
He initialization, used for relu activations.zero-mean.
HIDDEN_ACTIVATION - Static variable in class deepnetts.automl.Parameters
 
HIDDEN_LAYERS - Static variable in class deepnetts.automl.Parameters
 
HIDDEN_NEURONS - Static variable in class deepnetts.automl.Parameters
 
hiddenActivationFunction(ActivationType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Sets default type of the activation function to use for all hidden layers in the network.
hiddenActivationFunction(ActivationType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Sets default type of the activation function to use for all hidden layers in the network.
histogram(float[], int) - Static method in class deepnetts.util.StatUtils
 
histogram(float[], int, float, float) - Static method in class deepnetts.util.StatUtils
 
Histogram() - Constructor for class deepnetts.util.StatUtils.Histogram
 
HyperParameterSearch - Class in deepnetts.automl
The core automl class that performs automated model building and evaluation with specified parameters.
HyperParameterSearch() - Constructor for class deepnetts.automl.HyperParameterSearch
 

I

IMAGE_IDX_FILE - Static variable in class deepnetts.util.ImageSetUtils
 
ImagePreprocessing - Class in deepnetts.util
Used at inference time
ImagePreprocessing() - Constructor for class deepnetts.util.ImagePreprocessing
 
ImageResize - Enum in deepnetts.util
 
ImageSet - Class in deepnetts.data
Data set with images that will be used to train convolutional neural network.
ImageSet(int, int) - Constructor for class deepnetts.data.ImageSet
Creates empty image set for images of specified size.
ImageSet(int, int, String) - Constructor for class deepnetts.data.ImageSet
Creates image set with images from specified directory path.
ImageSetUtils - Class in deepnetts.util
 
ImageSetUtils() - Constructor for class deepnetts.util.ImageSetUtils
 
ImageUtils - Class in deepnetts.util
Utility methods to work with images.
importWeights(NeuralNetwork, String) - Static method in class deepnetts.util.TensorflowUtils
 
inc(int, int) - Method in class deepnetts.eval.ConfusionMatrix
Increments matrix value at specified position.
init() - Method in class deepnetts.net.layers.AbstractLayer
This method should implement layer initialization in subclasses, when a layer is added to the network (create weights, outputs, deltas, randomization etc.).
init() - Method in class deepnetts.net.layers.ConvolutionalLayer
Init dimensions, create matrices, filters, weights, biases and all internal structures etc.
init() - Method in class deepnetts.net.layers.FlattenLayer
 
init() - Method in class deepnetts.net.layers.FullyConnectedLayer
Creates all internal data structures: inputs, weights, biases, outputs, deltas, deltaWeights, deltaBiases prevDeltaWeights, prevDeltaBiases.
init() - Method in class deepnetts.net.layers.InputLayer
Initialize this layer in network.
init() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
init() - Method in class deepnetts.net.layers.OutputLayer
 
init() - Method in class deepnetts.net.layers.SoftmaxOutputLayer
 
initSeed(long) - Static method in class deepnetts.net.weights.RandomWeights
Initializes random number generator with specified seed.
initSeed(long) - Method in class deepnetts.util.RandomGenerator
 
initTransientFields() - Method in class deepnetts.net.layers.AbstractLayer
 
initTransientFields() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
initTransientFields() - Method in class deepnetts.net.layers.FullyConnectedLayer
 
initTransientFields() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
initTransientFields() - Method in class deepnetts.net.layers.SoftmaxOutputLayer
 
InputLayer - Class in deepnetts.net.layers
Input layer in a neural network.
InputLayer(int, int, int) - Constructor for class deepnetts.net.layers.InputLayer
Creates input layer with specified width, height, and depth (number of channels).
InputLayer(int, int) - Constructor for class deepnetts.net.layers.InputLayer
Creates input layer with specified width and height, and depth=1 (single depth/channel).
InputLayer(int) - Constructor for class deepnetts.net.layers.InputLayer
Creates input layer with specified width, and with height and depth equals to one.
INPUTS - Static variable in class deepnetts.automl.Parameters
 
invert() - Method in class deepnetts.data.ExampleImage
 
isBatchMode() - Method in class deepnetts.net.layers.AbstractLayer
 
isBatchMode() - Method in class deepnetts.net.train.BackpropagationTrainer
In batch mode weights are adjusted after the pass of all examples from the training set, while in online mode weights are adjusted after each training example.
isEnabled() - Method in class deepnetts.util.ImagePreprocessing
 
isHasHeader() - Method in class deepnetts.util.CsvFormat
 
isImageFile(File) - Method in class deepnetts.util.AugmentImagesTest
 
isImageFile(File) - Method in class deepnetts.util.DeleteAugmentImages
 
isImageFile(File) - Method in class deepnetts.util.RandomlyTranslateImages
 
isInvertPixels() - Method in class deepnetts.util.ImagePreprocessing
 
isSubMean() - Method in class deepnetts.util.ImagePreprocessing
 
ISSUED_DATE - Static variable in class deepnetts.util.LicenseChecker
 
isTrainable() - Method in class deepnetts.net.layers.AbstractLayer
 
Item(float[], float[]) - Constructor for class deepnetts.data.TabularDataSet.Item
 
Item(Tensor, Tensor) - Constructor for class deepnetts.data.TabularDataSet.Item
 
ITERATION_FINISHED - Static variable in class deepnetts.net.train.TrainingEvent
Specifies that training iteration has finished.

K

KFoldCrossValidation - Class in deepnetts.net.train
Split data set into k parts of equal sizes (folds), then train model with k-1 folds, and validate with remaining 1 fold.
KFoldCrossValidation.Builder - Class in deepnetts.net.train
Builder object for KFoldCrossValidation.

L

LABELS_FILE - Static variable in class deepnetts.util.ImageSetUtils
 
labelsFromSubDirectories(String) - Static method in class deepnetts.util.ImageSetUtils
Returns a list of category/class labels from the names of subdirectories for the given path.
Layer - Interface in deepnetts.net.layers
Common base interface for all types of neural network layers.
LayerType - Enum in deepnetts.net.layers
Supported types of layers.
LeakyRelu - Class in deepnetts.net.layers.activation
Leaky Rectified Linear Activation and its Derivative.
LeakyRelu() - Constructor for class deepnetts.net.layers.activation.LeakyRelu
 
LeakyRelu(float) - Constructor for class deepnetts.net.layers.activation.LeakyRelu
 
LEARNING_RATE - Static variable in class deepnetts.automl.Parameters
 
LearningRateDecay - Class in deepnetts.net.train.opt
https://www.coursera.org/learn/deep-neural-network/lecture/hjgIA/learning-rate-decay
LearningRateDecay(float, float) - Constructor for class deepnetts.net.train.opt.LearningRateDecay
 
LicenceException(String) - Constructor for exception deepnetts.util.LicenseChecker.LicenceException
 
LICENSE_NUMBER - Static variable in class deepnetts.util.LicenseChecker
 
LICENSE_TYPE - Static variable in class deepnetts.util.LicenseChecker
 
LicenseChecker - Class in deepnetts.util
Provides methods that perform license file checks.
LicenseChecker() - Constructor for class deepnetts.util.LicenseChecker
 
LicenseChecker.LicenceException - Exception in deepnetts.util
This exception is thrown if there is some issue with the license file (invalid, expired or not found).
Linear - Class in deepnetts.net.layers.activation
Linear activation function and its derivative.
Linear() - Constructor for class deepnetts.net.layers.activation.Linear
 
listOf(Parameter...) - Static method in class deepnetts.util.Parameter
 
load(String, Class<T>) - Static method in class deepnetts.net.NeuralNetwork
Loads and returns neural network previously saved to a file.
loadFileImageMapFromDirectory(File) - Static method in class deepnetts.util.ImageUtils
Loads JPG, JPEG or PNG images from specified directory and returns them as a map with File object as a key and BufferedImage object as a value.
loadImages(String) - Method in class deepnetts.data.ImageSet
Loads images from the specified image index file.
loadImages(File) - Method in class deepnetts.data.ImageSet
Loads example images with corresponding labels from the specified file.
loadImages(File, int) - Method in class deepnetts.data.ImageSet
Loads specified number of example images with corresponding labels from the specified file.
loadImagesFromDirectory(File) - Static method in class deepnetts.util.ImageUtils
Loads all images from the specified directory, and returns them as a list.
loadLabels(String) - Method in class deepnetts.data.ImageSet
Loads and returns image labels to train neural network from the specified file.
loadLabels(File) - Method in class deepnetts.data.ImageSet
Loads and returns image labels to train neural network from the specified file.These labels will be used to label network's outputs.
LOGGER - Static variable in class deepnetts.core.DeepNetts
 
LOGGER - Static variable in class deepnetts.util.DeepNettsLogManager
 
lossFunction(Class<? extends LossFunction>) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
 
lossFunction(LossType) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Sets loss function to be used by created neural network.
lossFunction(LossType) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Sets loss function to be used by created neural network.
LossFunction - Interface in deepnetts.net.loss
Base Interface for all loss functions.
LossType - Enum in deepnetts.net.loss
Supported types of Loss Functions in Deep Netts engine.

M

macroAverage(Collection<EvaluationMetrics>) - Static method in class deepnetts.eval.ClassifierEvaluator
Calculates macro average for the given list of ClassificationMetrics.
macroAverage(Collection<EvaluationMetrics>) - Static method in class deepnetts.eval.RegresionEvaluator
 
main(String[]) - Static method in class deepnetts.util.AugmentImagesTest
 
main(String[]) - Static method in class deepnetts.util.CenterOnWhiteBackground
 
main(String[]) - Static method in class deepnetts.util.CreateImageIndex
 
main(String[]) - Static method in class deepnetts.util.CreateLabelsIndex
 
main(String[]) - Static method in class deepnetts.util.DeepNettsRunner
 
main(String[]) - Static method in class deepnetts.util.DeleteAugmentImages
 
main(String[]) - Static method in class deepnetts.util.GenerateRandomNegative
 
main(String[]) - Static method in class deepnetts.util.ObjectsOnBackgrounds
 
main(String[]) - Static method in class deepnetts.util.RandomlyTranslateImages
 
main(String[]) - Static method in class deepnetts.util.RunScaleImages
 
MathFunctions - Class in deepnetts.net.layers.activation
Misc math utility functions.
max() - Method in class deepnetts.util.Range
 
max(float[]) - Static method in class deepnetts.util.StatUtils
 
max(Tensor, Tensor, Tensor) - Static method in class deepnetts.util.Tensors
 
MAX_EPOCHS - Static variable in class deepnetts.automl.Parameters
 
MAX_ERROR - Static variable in class deepnetts.automl.Parameters
 
MaxPoolingLayer - Class in deepnetts.net.layers
This layer performs max pooling operation in convolutional neural network, which scales down output from previous layer by taking max outputs from small predefined filter areas.
MaxPoolingLayer(int, int, int) - Constructor for class deepnetts.net.layers.MaxPoolingLayer
Creates a new max pooling layer with specified filter dimensions and stride.
MaxPoolingLayer(Filter) - Constructor for class deepnetts.net.layers.MaxPoolingLayer
 
MaxScaler - Class in deepnetts.data.norm
Performs max normalization, rescales data to corresponding max value in each column.
MaxScaler(DataSet<MLDataItem>) - Constructor for class deepnetts.data.norm.MaxScaler
Creates a new instance of max normalizer initialized to max values in given data set.
mean(float[]) - Static method in class deepnetts.util.StatUtils
 
mean() - Method in class deepnetts.util.Tensor
 
MeanSquaredErrorLoss - Class in deepnetts.net.loss
Mean Squared Error Loss function.
MeanSquaredErrorLoss(NeuralNetwork) - Constructor for class deepnetts.net.loss.MeanSquaredErrorLoss
Creates a new mean squared error loss for the given neural network.
MeanSquaredErrorLoss(int) - Constructor for class deepnetts.net.loss.MeanSquaredErrorLoss
 
min() - Method in class deepnetts.util.Range
 
min(float[]) - Static method in class deepnetts.util.StatUtils
 
min(Tensor, Tensor, Tensor) - Static method in class deepnetts.util.Tensors
 
MINI_BATCH - Static variable in class deepnetts.net.train.TrainingEvent
Specifies mini batch event.
MinMaxScaler - Class in deepnetts.data.norm
Performs Min Max normalization on the given data set.
MinMaxScaler(DataSet<MLDataItem>) - Constructor for class deepnetts.data.norm.MinMaxScaler
Creates a new instance of max normalizer initialized to max values in given data set.
missingValuesCount(float[]) - Static method in class deepnetts.util.StatUtils
 
missingValuesCount(float[][]) - Static method in class deepnetts.util.StatUtils
 
missingValuesCount(TabularDataSet<TabularDataSet.Item>) - Static method in class deepnetts.util.StatUtils
 
MLDataItem - Interface in deepnetts.data
Single data item that will be used to train machine learning model.
model(NeuralNetwork) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
 
MOMENTUM - Static variable in class deepnetts.automl.Parameters
 
MomentumOptimizer - Class in deepnetts.net.train.opt
Momentum optimization adds momentum parameter to basic Stochastic Gradient Descent, which can accelerate the process.
MomentumOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.MomentumOptimizer
 
mserror - Variable in class deepnetts.eval.ClassificationMetrics.Stats
 
multiply(float) - Method in class deepnetts.util.Tensor
 
multiply(float, int) - Method in class deepnetts.util.Tensor
 
multiply(float[], float[]) - Static method in class deepnetts.util.Tensors
 
multiplyElementWise(Tensor) - Method in class deepnetts.util.Tensor
 

N

NAME - Static variable in class deepnetts.util.LicenseChecker
 
names() - Method in class deepnetts.automl.Parameters
 
negativeFreqency() - Method in class deepnetts.eval.ClassificationMetrics
How often does negative class actually occur in the sample
NETWORK_FILE_EXT - Static variable in class deepnetts.util.FileIO
 
networkFactory(NetworkFactory<?>) - Method in class deepnetts.automl.HyperParameterSearch
 
NetworkFactory<T extends NeuralNetwork> - Interface in deepnetts.automl
Base interface for all network factories.
NetworkType - Enum in deepnetts.net
Neural network architecture types.
NeuralNetwork<T extends Trainer> - Class in deepnetts.net
Base class for all neural networks in Deep Netts.
nextFloat() - Method in class deepnetts.util.RandomGenerator
 
nextGaussian() - Method in class deepnetts.util.RandomGenerator
 
nextInt() - Method in class deepnetts.util.RandomGenerator
 
normal(float[]) - Static method in class deepnetts.net.weights.RandomWeights
 
normalizeInput(Tensor) - Method in class deepnetts.data.norm.MaxScaler
 
numBins() - Method in class deepnetts.util.StatUtils.Histogram
 
numDimensions() - Method in class deepnetts.util.Shape
 
numSplits(int) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
 

O

ObjectsOnBackgrounds - Class in deepnetts.util
Center images on backgounds and save at target path.
ObjectsOnBackgrounds() - Constructor for class deepnetts.util.ObjectsOnBackgrounds
 
of(T, T) - Static method in class deepnetts.automl.Range
 
of(Class) - Static method in enum deepnetts.net.loss.LossType
 
Of(Class) - Static method in enum deepnetts.net.NetworkType
 
of(float, float) - Static method in class deepnetts.util.Range
 
of(int...) - Static method in class deepnetts.util.Shape
 
of(float[]) - Static method in class deepnetts.util.Tensor
 
ofSize(int) - Static method in class deepnetts.net.layers.Filter
Factory method that creates filter settings with specified size (using same size for filter width and height).
ofSize(int, int) - Static method in class deepnetts.net.layers.Filter
Factory method that creates a filter settings with specified width and height
oneHotEncode(String, String[]) - Static method in class deepnetts.data.DataSets
Returns one hot encoded vector for the given label.
ones(int) - Static method in class deepnetts.util.Tensors
 
OPTIMIZER - Static variable in class deepnetts.automl.Parameters
 
Optimizer - Interface in deepnetts.net.train.opt
Optimization technique to tune network's weights parameters used by training algorithm.
OptimizerType - Enum in deepnetts.net.train.opt
Supported types of optimization methods used by back-propagation training algorithm.
OUTPUT_ACTIVATION - Static variable in class deepnetts.automl.Parameters
 
OutputLayer - Class in deepnetts.net.layers
Output layer of a neural network.
OutputLayer(int) - Constructor for class deepnetts.net.layers.OutputLayer
Creates an instance of output layer with specified width (number of outputs) and sigmoid activation function by default.
OutputLayer(int, ActivationType) - Constructor for class deepnetts.net.layers.OutputLayer
Creates an instance of output layer with specified width (number of outputs) and specified activation function.
OutputLayer(String[]) - Constructor for class deepnetts.net.layers.OutputLayer
Creates an instance of output layer with specified width (number of outputs) which corresponds to number of labels and sigmoid activation function by default.
OutputLayer(String[], ActivationType) - Constructor for class deepnetts.net.layers.OutputLayer
 
OUTPUTS - Static variable in class deepnetts.automl.Parameters
 

P

padding(int) - Method in class deepnetts.net.layers.Filter
 
param(String, T) - Method in class deepnetts.automl.HyperParameterSearch
 
param(String, List<T>) - Method in class deepnetts.automl.HyperParameterSearch
 
param(String, Range<T>, String) - Method in class deepnetts.automl.HyperParameterSearch
 
Parameter<T> - Class in deepnetts.automl
A single parameter of the deep learning model to tune.
Parameter(String, List<T>) - Constructor for class deepnetts.automl.Parameter
 
Parameter<T> - Class in deepnetts.util
 
Parameter(String, T) - Constructor for class deepnetts.util.Parameter
 
ParameterCombination() - Constructor for class deepnetts.automl.Parameters.ParameterCombination
 
ParameterCombination(List<Parameter>) - Constructor for class deepnetts.automl.Parameters.ParameterCombination
 
Parameters - Class in deepnetts.automl
Parameter search space: a collection of parameters and methods for generating all possible combinations.
Parameters() - Constructor for class deepnetts.automl.Parameters
 
Parameters - Class in deepnetts.util
TODO: setMethod, throw meannigfull exceptions
Parameters() - Constructor for class deepnetts.util.Parameters
 
Parameters.ParameterCombination - Class in deepnetts.automl
Combination of parameters to search through.
physicalCoreCount() - Static method in class deepnetts.util.PhysicalCores
Returns the number of "physical" hardware threads available.
PhysicalCores - Class in deepnetts.util
Static utility class for finding the number of physical CPU cores.
positiveFreqency() - Method in class deepnetts.eval.ClassificationMetrics
How often does positive class actually occur in the sample
precision - Variable in class deepnetts.eval.ClassificationMetrics.Stats
 
predict(float...) - Method in class deepnetts.net.FeedForwardNetwork
Returns the network's prediction (outputs) for the given input.
predict(Tensor) - Method in class deepnetts.net.NeuralNetwork
Returns the prediction of this neural network for the given input.
Preprocessing<T> - Interface in deepnetts.data
Data pre-processing abstraction.
printLicense() - Method in class deepnetts.util.LicenseChecker
 
PROP_BATCH_MODE - Static variable in class deepnetts.net.train.BackpropagationTrainer
Name of the batchMode property
PROP_BATCH_SIZE - Static variable in class deepnetts.net.train.BackpropagationTrainer
Name of the batchSize property
PROP_IMAGE_HEIGHT - Static variable in class deepnetts.util.DeepNettsRunner
 
PROP_IMAGE_WIDTH - Static variable in class deepnetts.util.DeepNettsRunner
 
PROP_LABELS_FILE - Static variable in class deepnetts.util.DeepNettsRunner
 
PROP_LEARNING_RATE - Static variable in class deepnetts.net.train.BackpropagationTrainer
Name of the learningRate property
PROP_LEARNING_RATE - Static variable in class deepnetts.util.DeepNettsRunner
 
PROP_MAX_EPOCHS - Static variable in class deepnetts.net.train.BackpropagationTrainer
Name of the maxEpochs property
PROP_MAX_ERROR - Static variable in class deepnetts.net.train.BackpropagationTrainer
Name of the maxError property
PROP_MAX_ERROR - Static variable in class deepnetts.util.DeepNettsRunner
 
PROP_MOMENTUM - Static variable in class deepnetts.net.train.BackpropagationTrainer
Name of the momentum property
PROP_OPTIMIZER_TYPE - Static variable in class deepnetts.net.train.BackpropagationTrainer
Name of the optimizer property
PROP_TEST_FILE - Static variable in class deepnetts.util.DeepNettsRunner
 
PROP_TRAINING_FILE - Static variable in class deepnetts.util.DeepNettsRunner
 
put(Parameter<?>) - Method in class deepnetts.util.Parameters
 

R

RANDOM - Static variable in class deepnetts.automl.HyperParameterSearch
 
random(int) - Static method in class deepnetts.util.Tensors
 
random(int, int) - Static method in class deepnetts.util.Tensors
Generate and return random tensor with specified number of rows and cols.
random(int, int, int) - Static method in class deepnetts.util.Tensors
 
random(int, int, int, int) - Static method in class deepnetts.util.Tensors
 
randomCrop(BufferedImage, int, int, int, Random) - Static method in class deepnetts.util.ImageUtils
Crops specified number of random sub-images with specified dimensions.
randomCrop(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
Randomly crop image with specified width and height.
RandomGenerator - Class in deepnetts.util
Random number generator singleton.
randomize(float[]) - Static method in class deepnetts.net.weights.RandomWeights
Initialize the elements of specified array with random numbers with uniform distribution in range [-0.5, 0.5].
randomize() - Method in class deepnetts.util.Tensor
Randomize all values in tensor
RandomlyTranslateImages - Class in deepnetts.util
just move 2(x) pix to left right up down
RandomlyTranslateImages() - Constructor for class deepnetts.util.RandomlyTranslateImages
 
randomNum(int) - Method in class deepnetts.automl.Range
 
randomSeed(long) - Method in class deepnetts.automl.HyperParameterSearch
 
randomSeed(long) - Method in class deepnetts.net.ConvolutionalNetwork.Builder
Initializes random number generator with the specified seed in order to get same random number sequences used for weights initialization.
randomSeed(long) - Method in class deepnetts.net.FeedForwardNetwork.Builder
Initializes random number generator with the specified seed in order to get same random number sequences used for weights initialization.
randomTintAndBrightness(BufferedImage, float, int, int, Random) - Static method in class deepnetts.util.ImageUtils
Still not working as it should
randomTintAndBrightness(BufferedImage) - Static method in class deepnetts.util.ImageUtils
 
randomTranslateImage(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
Returns an array of images created by translating specified input image by specified number of count with specified step size.
RandomWeights - Class in deepnetts.net.weights
Weights randomization utility methods.
RandomWeights() - Constructor for class deepnetts.net.weights.RandomWeights
 
RandomWeightsType - Enum in deepnetts.net.weights
Types of supported weights randomization techniques.
Range<T> - Class in deepnetts.automl
A value range of type T for the parameter.
Range(T, T) - Constructor for class deepnetts.automl.Range
 
Range(T, T, T) - Constructor for class deepnetts.automl.Range
 
Range - Class in deepnetts.util
 
Range(float, float) - Constructor for class deepnetts.util.Range
 
range(float[]) - Static method in class deepnetts.util.StatUtils
 
RangeConsumer - Interface in deepnetts.util
 
RangeScaler - Class in deepnetts.data.norm
Normalize data set to specified range.
RangeScaler(float, float) - Constructor for class deepnetts.data.norm.RangeScaler
Creates a new instance of range normalizer initialized to given min and max values.
readCsv(File, int, int, boolean, String) - Static method in class deepnetts.data.DataSets
Creates and returns data set from specified CSV file.
readCsv(String, int, int, boolean, String) - Static method in class deepnetts.data.DataSets
 
readCsv(String, int, int, boolean) - Static method in class deepnetts.data.DataSets
 
readCsv(String, int, int, String) - Static method in class deepnetts.data.DataSets
 
readCsv(String, int, int) - Static method in class deepnetts.data.DataSets
Create data set from CSV file, using coma (,) as default delimiter and no header (column names) in first row.
recall - Variable in class deepnetts.eval.ClassificationMetrics.Stats
 
RegresionEvaluator - Class in deepnetts.eval
Evaluates regressor neural network for specified data set.
RegresionEvaluator() - Constructor for class deepnetts.eval.RegresionEvaluator
 
RegressionMetrics - Class in deepnetts.eval
Common metrics for regression models.
RegressionMetrics() - Constructor for class deepnetts.eval.RegressionMetrics
 
Relu - Class in deepnetts.net.layers.activation
Rectified Linear Activation and its Derivative.
Relu() - Constructor for class deepnetts.net.layers.activation.Relu
 
removeHandler(Handler) - Method in class deepnetts.util.DeepNettsLogManager
 
removeListener(TrainingListener) - Method in class deepnetts.net.train.BackpropagationTrainer
Removes training listener from this trainer.
renameFilesAsClasses(String, String) - Static method in class deepnetts.util.ImageSetUtils
Renames files in specified directory.
replace(float, float) - Method in class deepnetts.util.Tensor
 
reset() - Method in class deepnetts.net.loss.BinaryCrossEntropyLoss
 
reset() - Method in class deepnetts.net.loss.CrossEntropyLoss
 
reset() - Method in interface deepnetts.net.loss.LossFunction
Resets the total error and pattern counter.
reset() - Method in class deepnetts.net.loss.MeanSquaredErrorLoss
 
RmsPropOptimizer - Class in deepnetts.net.train.opt
A variation of AdaDelta optimizer.
RmsPropOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.RmsPropOptimizer
 
RootMeanSquaredError - Class in deepnetts.eval
A measure of error for regression tasks.
RootMeanSquaredError() - Constructor for class deepnetts.eval.RootMeanSquaredError
 
ROW_IDX - Static variable in interface deepnetts.net.train.opt.Optimizer
 
ROW_IDX - Static variable in class deepnetts.util.Shape
 
run() - Method in class deepnetts.automl.HyperParameterSearch
 
run() - Method in class deepnetts.net.train.KFoldCrossValidation
 
run() - Method in class deepnetts.util.AugmentImagesTest
 
run(String) - Method in class deepnetts.util.DeepNettsRunner
 
run(Collection<Callable<Void>>) - Method in class deepnetts.util.DeepNettsThreadPool
 
run(Runnable) - Method in class deepnetts.util.DeepNettsThreadPool
 
run() - Method in class deepnetts.util.DeleteAugmentImages
 
run() - Method in class deepnetts.util.RandomlyTranslateImages
 
run() - Method in class deepnetts.util.RunScaleImages
 
RunScaleImages - Class in deepnetts.util
 
RunScaleImages() - Constructor for class deepnetts.util.RunScaleImages
 

S

save(String) - Method in class deepnetts.net.NeuralNetwork
Saves this network using serialization to file with specified fileName.
scaleAndCenter(BufferedImage, int, int, int, Color) - Static method in class deepnetts.util.ImageUtils
Scales input image to specified target width or height, centers and returns resulting image.
scaleBySmallerAndCrop(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
Scales input image to specified target width or height, crops and returns resulting image.
scaleBySmallerTarget(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
 
scaleImage(BufferedImage, int, int) - Static method in class deepnetts.util.ImageUtils
Scales specified image to given size and returns new image with specified width and height.
scaleInput(Tensor) - Method in class deepnetts.data.norm.AbstractScaler
Normalize input of deployed model
scaleInput(Tensor) - Method in class deepnetts.data.norm.DecimalScaler
 
scaleInput(Tensor) - Method in class deepnetts.data.norm.MaxScaler
 
scaleInput(Tensor) - Method in class deepnetts.data.norm.MinMaxScaler
 
scaleInput(Tensor) - Method in class deepnetts.data.norm.RangeScaler
 
scaleInput(Tensor) - Method in class deepnetts.data.norm.Standardizer
 
scaleToMax(DataSet) - Static method in class deepnetts.data.DataSets
 
scaleToMinMax(DataSet) - Static method in class deepnetts.data.DataSets
 
SearchStrategy - Enum in deepnetts.automl
Strategy for hyper-parameter search.
set(float, int) - Method in class deepnetts.util.Tensor
Sets value at specified index position.
set(float, int, int) - Method in class deepnetts.util.Tensor
Set value at specified [row, col] position.
set(float, int, int, int) - Method in class deepnetts.util.Tensor
 
set(float, int, int, int, int) - Method in class deepnetts.util.Tensor
 
setBatchMode(boolean) - Method in class deepnetts.net.layers.AbstractLayer
 
setBatchMode(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
Sets flag whether to use batch mode during the training.
setBatchSize(int) - Method in class deepnetts.net.layers.AbstractLayer
 
setBatchSize(int) - Method in class deepnetts.net.train.BackpropagationTrainer
Batch size is number of training examples after which network's weights are adjusted.
setBiases(float[]) - Method in class deepnetts.net.layers.AbstractLayer
 
setBins(int[]) - Method in class deepnetts.util.StatUtils.Histogram
 
setBinWidth(float) - Method in class deepnetts.util.StatUtils.Histogram
 
setBrightness(boolean) - Method in class deepnetts.data.ImageSet
 
setCheckpointEpochs(int) - Method in class deepnetts.net.train.BackpropagationTrainer
On how many epochs the snapshots of the trained network should be created.
setClassLabel(String) - Method in class deepnetts.eval.ClassificationMetrics
Sets class label to which this metrics corresponds too
setColumnNames(String[]) - Method in class deepnetts.data.TabularDataSet
 
setColumnNames(String[]) - Method in class deepnetts.util.CsvFormat
 
setColumnTypes(ColumnType[]) - Method in class deepnetts.util.CsvFormat
 
setCount(int) - Method in class deepnetts.util.DescriptiveStatistics
 
setCropCornersAndCenter(boolean) - Method in class deepnetts.data.ImageSet
 
setDelimiter(String) - Method in class deepnetts.data.ImageSet
 
setDelimiter(String) - Method in class deepnetts.util.CsvFormat
 
setDeltas(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
 
setDropout(float) - Method in class deepnetts.net.layers.FullyConnectedLayer
 
setDropout(float) - Method in class deepnetts.net.train.BackpropagationTrainer
Dropout is a technique to prevent overfitting, which skips adjusting weights for some neurons with given probability.
setEarlyStopping(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
Early stopping stops training if it starts converging slow, and prevents overfitting.
setEarlyStoppingMinLossChange(float) - Method in class deepnetts.net.train.BackpropagationTrainer
Early stopping stops training if the error/loss start converging to slow.
setEarlyStoppingPatience(int) - Method in class deepnetts.net.train.BackpropagationTrainer
How many epochs to wait to see if the loss is lowering to slow.
setEnabled(boolean) - Method in class deepnetts.util.ImagePreprocessing
 
setExtendedLogging(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
Extended logging includes additional info for debugging the training.
setFileHandler(String) - Method in class deepnetts.util.DeepNettsLogManager
 
setFilters(Tensor) - Method in class deepnetts.net.layers.ConvolutionalLayer
 
setFilters(String) - Method in class deepnetts.net.layers.ConvolutionalLayer
 
setFlipHorizontal(boolean) - Method in class deepnetts.data.ImageSet
 
setFStat(float) - Method in class deepnetts.eval.RegressionMetrics
 
setGrayscale(boolean) - Method in class deepnetts.data.ImageSet
 
setHasHeader(boolean) - Method in class deepnetts.util.CsvFormat
 
setHiddenActivation(ActivationType) - Method in class deepnetts.automl.FeedForwardNetworkFactory
 
setId(int) - Method in class deepnetts.util.BoundingBox
 
setInput(Tensor) - Method in class deepnetts.net.ConvolutionalNetwork
 
setInput(float...) - Method in class deepnetts.net.FeedForwardNetwork
Sets network's input using given inputs and invokes the calculation of the network for the given input (forward pass).
setInput(Tensor) - Method in class deepnetts.net.layers.InputLayer
Sets network input
setInput(Tensor) - Method in class deepnetts.net.NeuralNetwork
Sets network input and calculates entire network (triggers forward pass).
setInvertImages(boolean) - Method in class deepnetts.data.ImageSet
 
setInvertPixels(boolean) - Method in class deepnetts.util.ImagePreprocessing
 
setL1Regularization(float) - Method in class deepnetts.net.layers.AbstractLayer
 
setL1Regularization(float) - Method in class deepnetts.net.train.BackpropagationTrainer
L1 regularization (sum of abs values) is used to prevent overfitting and too large weights.
setL2Regularization(float) - Method in class deepnetts.net.layers.AbstractLayer
 
setL2Regularization(float) - Method in class deepnetts.net.train.BackpropagationTrainer
L2 regularization (sum of squares) is used to prevent overfitting and too large weights.
setLabel(String) - Method in class deepnetts.net.NeuralNetwork
Sets label(name) for this neural network.
setLabel(String) - Method in class deepnetts.util.BoundingBox
 
setLearningRate(float) - Method in class deepnetts.net.layers.AbstractLayer
 
setLearningRate(float) - Method in class deepnetts.net.train.BackpropagationTrainer
Learning rate controls the step size as a percent of the error to use for adjusting internal parameters(weights) of the neural network.
setLearningRate(float) - Method in class deepnetts.net.train.opt.AdaDeltaOptimizer
 
setLearningRate(float) - Method in class deepnetts.net.train.opt.AdaGradOptimizer
 
setLearningRate(float) - Method in class deepnetts.net.train.opt.AdamOptimizer
 
setLearningRate(float) - Method in class deepnetts.net.train.opt.MomentumOptimizer
 
setLearningRate(float) - Method in interface deepnetts.net.train.opt.Optimizer
 
setLearningRate(float) - Method in class deepnetts.net.train.opt.RmsPropOptimizer
 
setLearningRate(float) - Method in class deepnetts.net.train.opt.SgdOptimizer
 
setLearningRateDecay(float) - Method in class deepnetts.net.train.BackpropagationTrainer
Learning rate decay lowers the learning rate with each epoch by devayRate factor, which may improve error lowering the error.
setLossFunction(LossFunction) - Method in class deepnetts.net.NeuralNetwork
Sets a loss function of this network, which is used to calculate total network error during the training.
setLossType(LossType) - Method in class deepnetts.automl.FeedForwardNetworkFactory
 
setLossType(LossType) - Method in class deepnetts.net.layers.OutputLayer
 
setMax(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setMaxEpochs(long) - Method in class deepnetts.net.train.BackpropagationTrainer
Deprecated.
Use setStopEpochs instead
setMaxError(float) - Method in class deepnetts.eval.RegressionMetrics
 
setMaxError(float) - Method in class deepnetts.net.train.BackpropagationTrainer
Sets stopping error threshold for this training.
setMaxInputs(Tensor) - Method in class deepnetts.data.norm.MaxScaler
 
setMaxOutputs(Tensor) - Method in class deepnetts.data.norm.MaxScaler
 
setMean(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setMean(Tensor) - Method in class deepnetts.util.ImagePreprocessing
 
setMeanAbsoluteError(float) - Method in class deepnetts.eval.RegressionMetrics
 
setMeanAbsolutePercentageError(float) - Method in class deepnetts.eval.RegressionMetrics
 
setMeanSquaredError(float) - Method in class deepnetts.eval.RegressionMetrics
 
setMedian(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setMin(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setMomentum(float) - Method in class deepnetts.net.layers.AbstractLayer
 
setMomentum(float) - Method in class deepnetts.net.train.BackpropagationTrainer
Momentum settings helps to avoid oscillations in weight changes and get more stable and faster training.
setNextlayer(AbstractLayer) - Method in class deepnetts.net.layers.AbstractLayer
 
setNormalizer(AbstractScaler) - Method in class deepnetts.net.NeuralNetwork
Sets normalization data normalization method that is applied to network's inputs.
setNumBins(int) - Method in class deepnetts.util.StatUtils.Histogram
 
setNumInputs(int) - Method in class deepnetts.automl.FeedForwardNetworkFactory
 
setNumOutputs(int) - Method in class deepnetts.automl.FeedForwardNetworkFactory
 
setOptimizer(OptimizerType) - Method in class deepnetts.net.train.BackpropagationTrainer
 
setOptimizerType(OptimizerType) - Method in class deepnetts.net.layers.AbstractLayer
 
setOptimizerType(OptimizerType) - Method in class deepnetts.net.layers.FlattenLayer
 
setOutputError(float[]) - Method in class deepnetts.net.NeuralNetwork
Sets the network's output errors, which are a difference between actual(predicted) and target output.
setOutputErrors(float[]) - Method in class deepnetts.net.layers.OutputLayer
 
setOutputLabels(String...) - Method in class deepnetts.net.NeuralNetwork
Sets output labels of this network.
setOutputs(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
 
setPreprocessing(Preprocessing<Tensor>) - Method in class deepnetts.net.NeuralNetwork
Sets preprocessing that needs to be performed before input is fed to this network.
setPrevDeltaWeights(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
 
setPrevLayer(AbstractLayer) - Method in class deepnetts.net.layers.AbstractLayer
 
setProperties(Properties) - Method in class deepnetts.net.train.BackpropagationTrainer
Sets properties from available keys in specified prop object.
setQ1(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setQ3(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setR2(float) - Method in class deepnetts.eval.RegressionMetrics
 
setResidualStandardError(float) - Method in class deepnetts.eval.RegressionMetrics
 
setResizeStrategy(ImageResize) - Method in class deepnetts.data.ImageSet
 
setRootMeanSquaredError(float) - Method in class deepnetts.eval.RegressionMetrics
 
setScaleImages(boolean) - Method in class deepnetts.data.ImageSet
 
setScore(float) - Method in class deepnetts.util.BoundingBox
 
setShuffle(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
Sets shuffle flag which determines if training set should be shuffled before each epoch.
setSnapshotEpochs(int) - Method in class deepnetts.net.train.BackpropagationTrainer
On how many epochs to make training snapshots.
setSnapshotPath(String) - Method in class deepnetts.net.train.BackpropagationTrainer
Path to use for making snapshots - saving the current state of trained network during the training in order to be able to restore it from a training point.
setSquaredErrorSum(float) - Method in class deepnetts.eval.RegressionMetrics
 
setStd(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setStopAccuracy(float) - Method in class deepnetts.net.train.BackpropagationTrainer
 
setStopEpochs(long) - Method in class deepnetts.net.train.BackpropagationTrainer
Sets number of epochs/iterations to run the training.
setStopError(float) - Method in class deepnetts.net.train.BackpropagationTrainer
The training stops when/if training error has reached this value.
setSubMean(boolean) - Method in class deepnetts.util.ImagePreprocessing
 
setTargetOutput(Tensor) - Method in class deepnetts.data.ExampleImage
 
setTestSet(DataSet<MLDataItem>) - Method in class deepnetts.net.train.BackpropagationTrainer
Test set is used after the training to estimate performance of the trained model and generalization ability with new data.
setThreshold(float) - Method in class deepnetts.eval.ClassifierEvaluator
 
setTrainable(boolean) - Method in class deepnetts.net.layers.AbstractLayer
Set trainable to false to freeze learned weights.
setTrainer(T) - Method in class deepnetts.net.NeuralNetwork
Sets the training algorithm of this neural network.
setTrainer(T) - Method in interface deepnetts.net.train.TrainerProvider
 
setTrainingSnapshots(boolean) - Method in class deepnetts.net.train.BackpropagationTrainer
Training snapshots save the current state of the trained neural network during the training in order to be able to restore it from a training point if needed.
setTranslate(boolean) - Method in class deepnetts.data.ImageSet
 
setValues(float...) - Method in class deepnetts.util.Tensor
 
setValuesFromString(String) - Method in class deepnetts.util.Tensor
Sets tensor values from CSV string.
setVar(float) - Method in class deepnetts.util.DescriptiveStatistics
 
setWeights(List<String>) - Method in class deepnetts.net.ConvolutionalNetwork
Sets network's weights for all layers.
setWeights(Tensor) - Method in class deepnetts.net.layers.AbstractLayer
 
setWeights(String) - Method in class deepnetts.net.layers.AbstractLayer
 
SgdOptimizer - Class in deepnetts.net.train.opt
Basic Stochastic Gradient Descent optimization algorithm, which iteratively change weights towards value which gives minimum error.
SgdOptimizer(AbstractLayer) - Constructor for class deepnetts.net.train.opt.SgdOptimizer
 
Shape - Class in deepnetts.util
Immutable class that represents Tensor shape.
Shape(int[]) - Constructor for class deepnetts.util.Shape
 
shuffle() - Method in class deepnetts.data.TabularDataSet
Shuffles the data set items using the default random generator.
shuffle(int) - Method in class deepnetts.data.TabularDataSet
Shuffles data set items using java random generator initializes with specified seed
shutdown() - Static method in class deepnetts.core.DeepNetts
Shuts down all the threads in DeepNets thread pool.
shutdown() - Method in class deepnetts.util.DeepNettsThreadPool
 
shutdownNow() - Method in class deepnetts.util.DeepNettsThreadPool
 
Sigmoid - Class in deepnetts.net.layers.activation
Sigmoid activation function
Sigmoid() - Constructor for class deepnetts.net.layers.activation.Sigmoid
 
size() - Method in class deepnetts.util.Tensor
Total number of values in tensor.
SoftmaxOutputLayer - Class in deepnetts.net.layers
Output layer with softmax activation function.
SoftmaxOutputLayer(int) - Constructor for class deepnetts.net.layers.SoftmaxOutputLayer
 
split(double...) - Method in class deepnetts.data.ImageSet
Splits data set into several parts specified by the input parameter partSizes.
split(int) - Method in class deepnetts.data.TabularDataSet
Split data set into specified number of part of equal sizes.
split(double...) - Method in class deepnetts.data.TabularDataSet
Splits data set into several parts specified by the input parameter partSizes.
sqrt() - Method in class deepnetts.util.Tensor
 
standardDeviation(float[], float) - Static method in class deepnetts.util.StatUtils
 
Standardizer - Class in deepnetts.data.norm
Performs standardization on inputs in order to get desired statistical properties of the data set (zero mean and one standard deviation).
Standardizer(DataSet<MLDataItem>) - Constructor for class deepnetts.data.norm.Standardizer
 
STARTED - Static variable in class deepnetts.net.train.TrainingEvent
Specifies that training has started.
Stats() - Constructor for class deepnetts.eval.ClassificationMetrics.Stats
 
StatUtils - Class in deepnetts.util
 
StatUtils() - Constructor for class deepnetts.util.StatUtils
 
StatUtils.Histogram - Class in deepnetts.util
 
std(float) - Method in class deepnetts.util.Tensor
 
step(T) - Method in class deepnetts.automl.Range
 
stop() - Method in class deepnetts.net.train.BackpropagationTrainer
Stops the training.
STOPPED - Static variable in class deepnetts.net.train.TrainingEvent
Specifies that training has stopped.
strategy(String) - Method in class deepnetts.automl.Range
 
stride(int) - Method in class deepnetts.net.layers.Filter
 
sub(float, int, int) - Method in class deepnetts.util.Tensor
 
sub(float, int, int, int) - Method in class deepnetts.util.Tensor
 
sub(float, int, int, int, int) - Method in class deepnetts.util.Tensor
 
sub(Tensor) - Method in class deepnetts.util.Tensor
Subtracts specified tensor t from this tensor.
sub(float) - Method in class deepnetts.util.Tensor
 
sub(Tensor, Tensor) - Static method in class deepnetts.util.Tensor
Subtracts tensor t2 from t1.
sub(float[], float) - Static method in class deepnetts.util.Tensors
 
sub(float[], float[]) - Static method in class deepnetts.util.Tensors
 
submit(Callable<?>) - Method in class deepnetts.util.DeepNettsThreadPool
Submit a single task to thread pool.
sumAbs() - Method in class deepnetts.util.Tensor
Returns sum of abs values of this tensor - L1 norm
sumSqr() - Method in class deepnetts.util.Tensor
Returns sum of squared values of this tensor - L2 norm

T

TabularDataSet<T extends MLDataItem> - Class in deepnetts.data
Basic data set with tabular data.
TabularDataSet(int, int) - Constructor for class deepnetts.data.TabularDataSet
Create a new instance of BasicDataSet with specified size of input and output.
TabularDataSet.Item - Class in deepnetts.data
Represents a basic data set item (single row) with input tensor and target vector in a data set.
Tanh - Class in deepnetts.net.layers.activation
Hyperbolic tangens activation function
Tanh() - Constructor for class deepnetts.net.layers.activation.Tanh
 
Tensor - Class in deepnetts.util
This class represents a wrapper for multidimensional array.
Tensor(float...) - Constructor for class deepnetts.util.Tensor
Creates a single row tensor with specified values.
Tensor(Shape, float...) - Constructor for class deepnetts.util.Tensor
 
Tensor(float[][]) - Constructor for class deepnetts.util.Tensor
Creates a 2D tensor / matrix with specified values.
Tensor(float[][][]) - Constructor for class deepnetts.util.Tensor
Creates a 3D tensor from specified 3D array
Tensor(float[][][][]) - Constructor for class deepnetts.util.Tensor
 
Tensor(int) - Constructor for class deepnetts.util.Tensor
Creates an empty single row tensor with specified number of columns.
Tensor(int, float) - Constructor for class deepnetts.util.Tensor
 
Tensor(int, int) - Constructor for class deepnetts.util.Tensor
Creates a tensor with specified number of rows and columns.
Tensor(int, int, float[]) - Constructor for class deepnetts.util.Tensor
 
Tensor(int, int, int) - Constructor for class deepnetts.util.Tensor
Creates a 3D tensor with specified number of rows, cols and depth.
Tensor(int, int, int, int) - Constructor for class deepnetts.util.Tensor
 
Tensor(int, int, int, int, float[]) - Constructor for class deepnetts.util.Tensor
 
Tensor(int, int, int, float[]) - Constructor for class deepnetts.util.Tensor
 
Tensor(Tensor) - Constructor for class deepnetts.util.Tensor
Public deep copy / clone constructor.
TensorflowUtils - Class in deepnetts.util
 
TensorflowUtils() - Constructor for class deepnetts.util.TensorflowUtils
 
Tensors - Class in deepnetts.util
Static utility methods for tensors.
test(DataSet<? extends MLDataItem>) - Method in class deepnetts.net.NeuralNetwork
Tests how good are predictions of this network using specified test set.
TEST_FILE - Static variable in class deepnetts.util.ImageSetUtils
 
testSet(DataSet) - Method in class deepnetts.automl.HyperParameterSearch
 
toJson(NeuralNetwork<?>) - Static method in class deepnetts.util.FileIO
Returns JSON representation of specified neural network object.
toString() - Method in class deepnetts.automl.Parameter
 
toString() - Method in class deepnetts.automl.Parameters.ParameterCombination
 
toString() - Method in class deepnetts.automl.Parameters
 
toString() - Method in class deepnetts.data.TabularDataSet.Item
 
toString() - Method in class deepnetts.eval.ClassificationMetrics.Stats
 
toString() - Method in class deepnetts.eval.ClassificationMetrics
 
toString() - Method in class deepnetts.eval.ClassifierEvaluator
 
toString() - Method in class deepnetts.eval.ConfusionMatrix
 
toString() - Method in class deepnetts.eval.RegressionMetrics
 
toString() - Method in class deepnetts.net.layers.ConvolutionalLayer
 
toString() - Method in class deepnetts.net.layers.FlattenLayer
 
toString() - Method in class deepnetts.net.layers.FullyConnectedLayer
 
toString() - Method in class deepnetts.net.layers.InputLayer
 
toString() - Method in enum deepnetts.net.layers.LayerType
 
toString() - Method in class deepnetts.net.layers.MaxPoolingLayer
 
toString() - Method in class deepnetts.net.layers.OutputLayer
 
toString() - Method in enum deepnetts.net.loss.LossType
 
toString() - Method in enum deepnetts.net.NetworkType
 
toString() - Method in class deepnetts.net.NeuralNetwork
Returns string representation of this network including all layers and settings.
toString() - Method in class deepnetts.net.train.TrainingResult
 
toString() - Method in class deepnetts.util.BoundingBox
 
toString() - Method in class deepnetts.util.CsvFormat
 
toString() - Method in class deepnetts.util.DescriptiveStatistics
 
toString() - Method in class deepnetts.util.Parameter
 
toString() - Method in class deepnetts.util.Tensor
 
train(DataSet<? extends MLDataItem>) - Method in class deepnetts.net.NeuralNetwork
Trains the neural network using specified training set.
train(DataSet<MLDataItem>, DataSet<MLDataItem>) - Method in class deepnetts.net.train.BackpropagationTrainer
Runs training using given training and validation sets.
train(DataSet<?>, double) - Method in class deepnetts.net.train.BackpropagationTrainer
Run training using given training set, and split part of it to use as a validation set.
train(DataSet<? extends MLDataItem>) - Method in class deepnetts.net.train.BackpropagationTrainer
Runs training using specified training set.
train(DataSet<? extends MLDataItem>) - Method in interface deepnetts.net.train.Trainer
Trains this model using specified training set.
TRAIN_FILE - Static variable in class deepnetts.util.ImageSetUtils
 
Trainer - Interface in deepnetts.net.train
Generic interface for deep learning training algorithm.
TrainerProvider<T extends Trainer> - Interface in deepnetts.net.train
This interface is implemented by trainable deep learning models, in order to provide access to training algorithm.
TrainingEvent - Class in deepnetts.net.train
TrainingEvent is used to notify interested parties that training event has happened.
TrainingEvent(BackpropagationTrainer, TrainingEvent.Type) - Constructor for class deepnetts.net.train.TrainingEvent
Constructs a new TrainingEvent with specified source and type.
TrainingEvent.Type - Enum in deepnetts.net.train
Type of a training event.
trainingListener(TrainingListener) - Method in class deepnetts.automl.HyperParameterSearch
 
trainingListener(TrainingListener) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
 
TrainingListener - Interface in deepnetts.net.train
The listener interface for receiving notifications about training events.
TrainingResult - Class in deepnetts.net.train
All information about the completed training including training settings, epochs, loss and evaluation metrics.
TrainingResult(Properties, int, float, EvaluationMetrics) - Constructor for class deepnetts.net.train.TrainingResult
 
trainingSet(DataSet) - Method in class deepnetts.automl.HyperParameterSearch
 
trainingSet(DataSet) - Method in class deepnetts.net.train.KFoldCrossValidation.Builder
 
TrainTestPair - Class in deepnetts.data
This class holds training and test data set pair.
TrainTestPair(DataSet, DataSet) - Constructor for class deepnetts.data.TrainTestPair
 
trainTestSplit(DataSet<?>, double) - Static method in class deepnetts.data.DataSets
 
translateImage(BufferedImage) - Static method in class deepnetts.util.ImageUtils
Generates 4 translated variations of the given image: translates it for one third of an image width and height in each direction.
TRUE_NEGATIVE - Static variable in class deepnetts.eval.ConfusionMatrix
A label for items classified as negative which are really negative.
TRUE_POSITIVE - Static variable in class deepnetts.eval.ConfusionMatrix
A label for items classified as positive which are really positive.
TypedProperties - Class in deepnetts.util
Provides methods for getting typed properties for the given key.
TypedProperties(Properties) - Constructor for class deepnetts.util.TypedProperties
 

U

uniform(float[], int) - Static method in class deepnetts.net.weights.RandomWeights
Uniform U[-a,a] where a=1/sqrt(in).
uniform(float[], float, float) - Static method in class deepnetts.net.weights.RandomWeights
 
updateLearningRate(float) - Method in class deepnetts.net.train.BackpropagationTrainer
Updates learning rate for all layers during the learning rate decay.

V

VALID_UNTIL_DATE - Static variable in class deepnetts.util.LicenseChecker
 
valueFor(NeuralNetwork, DataSet<? extends MLDataItem>) - Method in interface deepnetts.net.loss.LossFunction
Calculates and returns loss function value for the given neural network and data set.
valueOf(String) - Static method in enum deepnetts.automl.SearchStrategy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.net.layers.activation.ActivationType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.net.layers.LayerType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.net.loss.LossType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.net.NetworkType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.net.train.opt.OptimizerType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.net.train.TrainingEvent.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.net.weights.RandomWeightsType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.util.ColumnType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum deepnetts.util.ImageResize
Returns the enum constant of this type with the specified name.
values() - Method in class deepnetts.automl.Parameters
 
values() - Static method in enum deepnetts.automl.SearchStrategy
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.net.layers.activation.ActivationType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.net.layers.LayerType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.net.loss.LossType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.net.NetworkType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.net.train.opt.OptimizerType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.net.train.TrainingEvent.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.net.weights.RandomWeightsType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.util.ColumnType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum deepnetts.util.ImageResize
Returns an array containing the constants of this enum type, in the order they are declared.
valuesAsString(Tensor[]) - Static method in class deepnetts.util.Tensor
 
variance(float[], float) - Static method in class deepnetts.util.StatUtils
 
version() - Method in class deepnetts.core.DeepNetts
Returns the Deep Netts version.

W

widrowHoff(float[], float, float) - Static method in class deepnetts.net.weights.RandomWeights
 
writeImages(List<BufferedImage>, String, String, String) - Static method in class deepnetts.util.ImageUtils
Writes list of images to specified file path.
writeToFile(NeuralNetwork, String) - Static method in class deepnetts.util.FileIO
Serializes specified neural network to file with specified file.
writeToFile(List<String>, String) - Static method in class deepnetts.util.ImageSetUtils
Writes a given list of strings to file.
writeToFileAsJson(NeuralNetwork, String) - Static method in class deepnetts.util.FileIO
 

X

xavier(float[], int, int) - Static method in class deepnetts.net.weights.RandomWeights
Normalized uniform initialization U[-a,a] with a = sqrt(6/(in + out)).

Z

zeroMean() - Method in class deepnetts.data.ImageSet
Applies zero mean normalization to entire dataset, and returns mean tensor.
zeros(int) - Static method in class deepnetts.util.Tensors
 
A B C D E F G H I K L M N O P R S T U V W X Z 
Skip navigation links

Copyright © 2022. All rights reserved.