Package | Description |
---|---|
deepnetts.automl |
Support for automatically building deep learning models using hyper-parameter search.
|
deepnetts.data |
Data structures to store example data used for building machine learning models.
|
deepnetts.data.norm |
Data normalization methods, used to scale data to specific range, in order to make them suitable for use by a neural network.
|
deepnetts.eval |
Evaluation procedures for machine learning models, used to estimate how good models are performing when given new data that (that was not used for training).
|
deepnetts.net |
Neural network architectures with their corresponding builders.
|
deepnetts.net.loss |
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
|
deepnetts.net.train |
Training algorithms and related utilities.
|
Modifier and Type | Method and Description |
---|---|
javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>> |
HyperParameterSearch.getEvaluator() |
Modifier and Type | Method and Description |
---|---|
HyperParameterSearch |
HyperParameterSearch.evaluator(javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) |
Modifier and Type | Class and Description |
---|---|
class |
TabularDataSet<T extends MLDataItem>
Basic data set with tabular data.
|
Modifier and Type | Class and Description |
---|---|
class |
ExampleImage
Example image to train a deep learning model.
|
static class |
TabularDataSet.Item
Represents a basic data set item (single row) with input tensor and
target vector in a data set.
|
Modifier and Type | Method and Description |
---|---|
void |
DecimalScaler.apply(javax.visrec.ml.data.DataSet<MLDataItem> dataSet)
Performs normalization on the given inputs.
|
void |
MaxScaler.apply(javax.visrec.ml.data.DataSet<MLDataItem> dataSet)
Performs normalization on the given inputs.
|
void |
MinMaxScaler.apply(javax.visrec.ml.data.DataSet<MLDataItem> dataSet)
Performs normalization on the given inputs.
|
void |
RangeScaler.apply(javax.visrec.ml.data.DataSet<MLDataItem> dataSet)
Performs normalization on the given inputs.
|
void |
Standardizer.apply(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) |
Constructor and Description |
---|
DecimalScaler(javax.visrec.ml.data.DataSet<MLDataItem> dataSet)
Creates a new instance of max normalizer initialized to max values in given data set.
|
MaxScaler(javax.visrec.ml.data.DataSet<MLDataItem> dataSet)
Creates a new instance of max normalizer initialized to max values in given data set.
|
MinMaxScaler(javax.visrec.ml.data.DataSet<MLDataItem> dataSet)
Creates a new instance of max normalizer initialized to max values in given data set.
|
Standardizer(javax.visrec.ml.data.DataSet<MLDataItem> dataSet) |
Modifier and Type | Method and Description |
---|---|
ClassificationMetrics |
ClassifierEvaluator.evaluate(NeuralNetwork neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
Performs classifier evaluation and returns classification performance metrics.
|
javax.visrec.ml.eval.EvaluationMetrics |
RegresionEvaluator.evaluate(NeuralNetwork neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) |
static ClassificationMetrics |
Evaluators.evaluateClassifier(NeuralNetwork<?> neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) |
static RegressionMetrics |
Evaluators.evaluateRegressor(NeuralNetwork<?> neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
Evaluates specified neural network with test set, as a regression model and returns basic regression evauation metrics.
|
Modifier and Type | Method and Description |
---|---|
javax.visrec.ml.eval.EvaluationMetrics |
NeuralNetwork.test(javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
Tests how good are predictions of this network using specified test set.
|
void |
NeuralNetwork.train(javax.visrec.ml.data.DataSet<? extends MLDataItem> trainingSet)
Trains the neural network using specified training set.
|
Modifier and Type | Method and Description |
---|---|
default float |
LossFunction.valueFor(NeuralNetwork nnet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> dataSet)
Calculates and returns loss function value for the given neural network and data set.
|
Modifier and Type | Method and Description |
---|---|
KFoldCrossValidation.Builder |
KFoldCrossValidation.Builder.evaluator(javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) |
void |
BackpropagationTrainer.setTestSet(javax.visrec.ml.data.DataSet<MLDataItem> testSet)
Test set is used after the training to estimate performance of the trained model and generalization ability with new data.
|
void |
BackpropagationTrainer.train(javax.visrec.ml.data.DataSet<? extends MLDataItem> trainingSet)
Runs training using specified training set.
|
void |
Trainer.train(javax.visrec.ml.data.DataSet<? extends MLDataItem> trainingSet)
Trains this model using specified training set.
|
void |
BackpropagationTrainer.train(javax.visrec.ml.data.DataSet<MLDataItem> trainingSet,
javax.visrec.ml.data.DataSet<MLDataItem> validationSet)
Runs training using given training and validation sets.
|
void |
BackpropagationTrainer.train(javax.visrec.ml.data.DataSet<MLDataItem> trainingSet,
javax.visrec.ml.data.DataSet<MLDataItem> validationSet)
Runs training using given training and validation sets.
|
Copyright © 2022. All rights reserved.