public class ClassifierEvaluator extends Object implements javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>>
Constructor and Description |
---|
ClassifierEvaluator() |
Modifier and Type | Method and Description |
---|---|
ClassificationMetrics |
evaluate(NeuralNetwork neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
Performs classifier evaluation and returns classification performance metrics.
|
ConfusionMatrix |
getConfusionMatrix() |
ClassificationMetrics |
getMacroAverage() |
Map<String,ClassificationMetrics> |
getMetricsByClass() |
float |
getThreshold() |
static javax.visrec.ml.eval.EvaluationMetrics |
macroAverage(Collection<javax.visrec.ml.eval.EvaluationMetrics> metrics)
Calculates macro average for the given list of ClassificationMetrics.
|
void |
setThreshold(float threshold) |
String |
toString() |
public ClassificationMetrics evaluate(NeuralNetwork neuralNet, javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
evaluate
in interface javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>>
neuralNet
- testSet
- public float getThreshold()
public void setThreshold(float threshold)
public ClassificationMetrics getMacroAverage()
public static javax.visrec.ml.eval.EvaluationMetrics macroAverage(Collection<javax.visrec.ml.eval.EvaluationMetrics> metrics)
metrics
- public Map<String,ClassificationMetrics> getMetricsByClass()
public ConfusionMatrix getConfusionMatrix()
Copyright © 2022. All rights reserved.