Uses of Class
deepnetts.tensor.TensorBase
Packages that use TensorBase
Package
Description
Data structures to store example data used for building machine learning models.
Data normalization methods, used to scale data to specific range, in order to make them suitable for use by a neural network.
Neural network architectures with their corresponding builders.
Neural network layers, which are main building blocks of a neural network.
Activation functions for neural network layers.
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
Various utility classes including Tensor, image operations, multithreading, exceptions etc.
-
Uses of TensorBase in deepnetts.cudnn
Methods in deepnetts.cudnn that return TensorBaseConstructors in deepnetts.cudnn with parameters of type TensorBaseModifierConstructorDescriptionCudaTensor(TensorBase tensor) CudaTensorBridge(TensorBase tensor) Alocate tensor on cuda device, copy from jvm memory to cuda and backFullyConnectedBackwardCuda(CudaHandles cudaHandles, TensorBase outputs, TensorBase weights, TensorBase biases, TensorBase inputs) FullyConnectedForwardCuda(CudaHandles cudaHandles, TensorBase outputs, TensorBase weights, TensorBase biases, TensorBase inputs) SoftMaxBackwardCuda(CudaHandles cudaHandles, TensorBase deltas, TensorBase weights, TensorBase biases, TensorBase inputs) SoftMaxForwardCuda(CudaHandles cudaHandles, TensorBase outputs, TensorBase weights, TensorBase biases, TensorBase inputs) -
Uses of TensorBase in deepnetts.data
Methods in deepnetts.data that return TensorBaseModifier and TypeMethodDescriptionMLDataItem.getInput()Returns an input for machine learning model of this item.TabularDataSet.Item.getInput()ImageSet.getMean()ExampleImage.getTargetOutput()MLDataItem.getTargetOutput()Returns target output for machine learning model of this item.TabularDataSet.Item.getTargetOutput()ImageSet.zeroMean()Applies zero mean normalization to entire dataset, and returns mean tensor.ImageSet.zeroMeanAndNormalize()ImageSet.zeroMeanPerChannel()Methods in deepnetts.data with parameters of type TensorBaseModifier and TypeMethodDescriptionfinal voidExampleImage.setTargetOutput(TensorBase targetOutput) Constructors in deepnetts.data with parameters of type TensorBase -
Uses of TensorBase in deepnetts.data.norm
Methods in deepnetts.data.norm that return TensorBaseMethods in deepnetts.data.norm with parameters of type TensorBaseModifier and TypeMethodDescriptionvoidMaxScaler.deNormalizeInputs(TensorBase inputs) voidMaxScaler.deNormalizeOutputs(TensorBase outputs) De-normalize given output vector in-place.voidMaxScaler.normalizeInput(TensorBase input) abstract voidAbstractScaler.scaleInput(TensorBase input) Normalize input of deployed modelvoidDecimalScaler.scaleInput(TensorBase input) voidMaxScaler.scaleInput(TensorBase input) voidMinMaxScaler.scaleInput(TensorBase input) voidRangeScaler.scaleInput(TensorBase input) voidStandardizer.scaleInput(TensorBase input) voidMaxScaler.setMaxInputs(TensorBase maxInputs) voidMaxScaler.setMaxOutputs(TensorBase maxOutputs) -
Uses of TensorBase in deepnetts.net
Methods in deepnetts.net that return TensorBaseModifier and TypeMethodDescriptionNeuralNetwork.getOutput()Returns network's output.NeuralNetwork.predict(TensorBase input) Returns the prediction of this neural network for the given input.Methods in deepnetts.net that return types with arguments of type TensorBaseModifier and TypeMethodDescriptionConvolutionalNetwork.getDeltaWeights()Returns delta weights for all layers.ConvolutionalNetwork.getLayersOutputs()Returns outputs of all layers.NeuralNetwork.getPreprocessing()Gets preprocessing that needs to be performed before input is fed to this network.ConvolutionalNetwork.getWeights()Returns weights from all layers in this network as a list of tensors.Methods in deepnetts.net with parameters of type TensorBaseModifier and TypeMethodDescriptionNeuralNetwork.predict(TensorBase input) Returns the prediction of this neural network for the given input.voidConvolutionalNetwork.setInput(TensorBase input) voidNeuralNetwork.setInput(TensorBase inputs) Sets network input and calculates entire network (triggers forward pass).voidNeuralNetwork.setOutputError(TensorBase outputErrors) Sets the network's output errors, which are a difference between actual(predicted) and target output.Method parameters in deepnetts.net with type arguments of type TensorBaseModifier and TypeMethodDescriptionvoidNeuralNetwork.setPreprocessing(Preprocessing<TensorBase> preprocessing) Sets preprocessing that needs to be performed before input is fed to this network. -
Uses of TensorBase in deepnetts.net.layers
Classes in deepnetts.net.layers with type parameters of type TensorBaseModifier and TypeClassDescriptionclassAbstractLayer<I extends TensorBase,O extends TensorBase, W extends TensorBase> Base class for different types of layers.classAbstractLayer<I extends TensorBase,O extends TensorBase, W extends TensorBase> Base class for different types of layers.classAbstractLayer<I extends TensorBase,O extends TensorBase, W extends TensorBase> Base class for different types of layers.interfaceLayer<O extends TensorBase>Common base interface for all types of neural network layers.Methods in deepnetts.net.layers that return TensorBaseModifier and TypeMethodDescriptionAbstractLayer.getBiases()ConvolutionalLayer.getFilterDeltaWeights()ConvolutionalLayer.getFilters()final TensorBaseAbstractLayer.getGradients()final TensorBaseOutputLayer.getOutputErrors()Methods in deepnetts.net.layers with parameters of type TensorBaseModifier and TypeMethodDescriptionvoidInputLayer.setInput(TensorBase in) Sets network inputfinal voidOutputLayer.setOutputErrors(TensorBase outputErrors) -
Uses of TensorBase in deepnetts.net.layers.activation
Methods in deepnetts.net.layers.activation with parameters of type TensorBaseModifier and TypeMethodDescriptiondefault voidActivationFunction.accept(TensorBase tensor) voidActivationFunction.apply(TensorBase tensor, int from, int to) voidLeakyRelu.apply(TensorBase tensor, int from, int to) voidLinear.apply(TensorBase tensor, int from, int to) voidRelu.apply(TensorBase tensor, int from, int to) voidSigmoid.apply(TensorBase tensor, int from, int to) voidSoftSign.apply(TensorBase tensor, int from, int to) voidTanh.apply(TensorBase tensor, int from, int to) -
Uses of TensorBase in deepnetts.net.loss
Methods in deepnetts.net.loss that return TensorBaseModifier and TypeMethodDescriptionBinaryCrossEntropyLoss.addPatternError(TensorBase predictedOutput, TensorBase targetOutput) CrossEntropyLoss.addPatternError(TensorBase predictedOut, TensorBase targetOut) LossFunction.addPatternError(TensorBase predictedOutput, TensorBase targetOutput) MeanSquaredErrorLoss.addPatternError(TensorBase predictedOut, TensorBase targetOut) Methods in deepnetts.net.loss with parameters of type TensorBaseModifier and TypeMethodDescriptionBinaryCrossEntropyLoss.addPatternError(TensorBase predictedOutput, TensorBase targetOutput) CrossEntropyLoss.addPatternError(TensorBase predictedOut, TensorBase targetOut) LossFunction.addPatternError(TensorBase predictedOutput, TensorBase targetOutput) MeanSquaredErrorLoss.addPatternError(TensorBase predictedOut, TensorBase targetOut) -
Uses of TensorBase in deepnetts.tensor
Subclasses of TensorBase in deepnetts.tensorModifier and TypeClassDescriptionclassOne dimensional tensor - a vector or an array.final classA 2D tensor / matrix with specified number of rows and columns..classclassMethods in deepnetts.tensor that return TensorBaseModifier and TypeMethodDescriptionstatic TensorBaseTensors.absMax(TensorBase t, TensorBase max) Returns tensors with max value for each component of input tensors.static TensorBaseTensors.absMin(TensorBase t, TensorBase min) final TensorBaseTensorBase.add(TensorBase t) Adds specified tensor t to this tensor.final TensorBaseTensorBase.addInto(TensorBase t, TensorBase result) TensorBase.apply(ActivationFunction af) Tensor1D.copy()Tensor2D.copy()Tensor3D.copy()Tensor4D.copy()TensorBase.copy()static TensorBaseTensorBase.multiply(float m) Multiplies all the values in tensor with a specified input parameter.TensorBase.sqr()final TensorBaseTensorBase.subInto(TensorBase t, TensorBase result) Methods in deepnetts.tensor with parameters of type TensorBaseModifier and TypeMethodDescriptionstatic TensorBaseTensors.absMax(TensorBase t, TensorBase max) Returns tensors with max value for each component of input tensors.static TensorBaseTensors.absMin(TensorBase t, TensorBase min) final TensorBaseTensorBase.add(TensorBase t) Adds specified tensor t to this tensor.final TensorBaseTensorBase.addInto(TensorBase t, TensorBase result) static final voidTensors.copy(TensorBase src, TensorBase dest) final voidTensorBase.copyFrom(TensorBase src) final voidTensorBase.div(TensorBase t) Element-wise divison with specified tensor.booleanTensorBase.equals(TensorBase t2, float delta) static voidTensors.max(TensorBase t1, TensorBase t2, TensorBase result) static voidTensors.min(TensorBase t1, TensorBase t2, TensorBase result) voidTensorBase.multiplyElementWise(TensorBase tensor2) final voidTensorBase.sub(TensorBase t) Subtracts specified tensor t from this tensor.static final voidTensorBase.subInplace(TensorBase t1, TensorBase t2) Subtracts tensor t2 from t1.final TensorBaseTensorBase.subInto(TensorBase t, TensorBase result) static StringTensorBase.valuesAsString(TensorBase[] tensors) Constructors in deepnetts.tensor with parameters of type TensorBase -
Uses of TensorBase in deepnetts.util
Methods in deepnetts.util that return TensorBaseMethods in deepnetts.util with parameters of type TensorBaseModifier and TypeMethodDescriptionvoidImagePreprocessing.apply(TensorBase input) voidImagePreprocessing.setMean(TensorBase mean)