Uses of Class
deepnetts.tensor.TensorBase
Packages that use TensorBase
Package
Description
Data structures to store example data used for building machine learning models.
Data normalization methods, used to scale data to specific range, in order to make them suitable for use by a neural network.
Neural network architectures with their corresponding builders.
Neural network layers, which are main building blocks of a neural network.
Activation functions for neural network layers.
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
Various utility classes including Tensor, image operations, multithreading, exceptions etc.
-
Uses of TensorBase in deepnetts.cudnn
Methods in deepnetts.cudnn that return TensorBaseConstructors in deepnetts.cudnn with parameters of type TensorBaseModifierConstructorDescriptionCudaTensor
(TensorBase tensor) CudaTensorBridge
(TensorBase tensor) Alocate tensor on cuda device, copy from jvm memory to cuda and backFullyConnectedBackwardCuda
(CudaHandles cudaHandles, TensorBase outputs, TensorBase weights, TensorBase biases, TensorBase inputs) FullyConnectedForwardCuda
(CudaHandles cudaHandles, TensorBase outputs, TensorBase weights, TensorBase biases, TensorBase inputs) SoftMaxBackwardCuda
(CudaHandles cudaHandles, TensorBase deltas, TensorBase weights, TensorBase biases, TensorBase inputs) SoftMaxForwardCuda
(CudaHandles cudaHandles, TensorBase outputs, TensorBase weights, TensorBase biases, TensorBase inputs) -
Uses of TensorBase in deepnetts.data
Methods in deepnetts.data that return TensorBaseModifier and TypeMethodDescriptionMLDataItem.getInput()
Returns an input for machine learning model of this item.TabularDataSet.Item.getInput()
ImageSet.getMean()
ExampleImage.getTargetOutput()
MLDataItem.getTargetOutput()
Returns target output for machine learning model of this item.TabularDataSet.Item.getTargetOutput()
ImageSet.zeroMean()
Applies zero mean normalization to entire dataset, and returns mean tensor.ImageSet.zeroMeanAndNormalize()
ImageSet.zeroMeanPerChannel()
Methods in deepnetts.data with parameters of type TensorBaseModifier and TypeMethodDescriptionfinal void
ExampleImage.setTargetOutput
(TensorBase targetOutput) Constructors in deepnetts.data with parameters of type TensorBase -
Uses of TensorBase in deepnetts.data.norm
Methods in deepnetts.data.norm that return TensorBaseMethods in deepnetts.data.norm with parameters of type TensorBaseModifier and TypeMethodDescriptionvoid
MaxScaler.deNormalizeInputs
(TensorBase inputs) void
MaxScaler.deNormalizeOutputs
(TensorBase outputs) De-normalize given output vector in-place.void
MaxScaler.normalizeInput
(TensorBase input) abstract void
AbstractScaler.scaleInput
(TensorBase input) Normalize input of deployed modelvoid
DecimalScaler.scaleInput
(TensorBase input) void
MaxScaler.scaleInput
(TensorBase input) void
MinMaxScaler.scaleInput
(TensorBase input) void
RangeScaler.scaleInput
(TensorBase input) void
Standardizer.scaleInput
(TensorBase input) void
MaxScaler.setMaxInputs
(TensorBase maxInputs) void
MaxScaler.setMaxOutputs
(TensorBase maxOutputs) -
Uses of TensorBase in deepnetts.net
Methods in deepnetts.net that return TensorBaseModifier and TypeMethodDescriptionNeuralNetwork.getOutput()
Returns network's output.NeuralNetwork.predict
(TensorBase input) Returns the prediction of this neural network for the given input.Methods in deepnetts.net that return types with arguments of type TensorBaseModifier and TypeMethodDescriptionConvolutionalNetwork.getDeltaWeights()
Returns delta weights for all layers.ConvolutionalNetwork.getLayersOutputs()
Returns outputs of all layers.NeuralNetwork.getPreprocessing()
Gets preprocessing that needs to be performed before input is fed to this network.ConvolutionalNetwork.getWeights()
Returns weights from all layers in this network as a list of tensors.Methods in deepnetts.net with parameters of type TensorBaseModifier and TypeMethodDescriptionNeuralNetwork.predict
(TensorBase input) Returns the prediction of this neural network for the given input.void
ConvolutionalNetwork.setInput
(TensorBase input) void
NeuralNetwork.setInput
(TensorBase inputs) Sets network input and calculates entire network (triggers forward pass).void
NeuralNetwork.setOutputError
(TensorBase outputErrors) Sets the network's output errors, which are a difference between actual(predicted) and target output.Method parameters in deepnetts.net with type arguments of type TensorBaseModifier and TypeMethodDescriptionvoid
NeuralNetwork.setPreprocessing
(Preprocessing<TensorBase> preprocessing) Sets preprocessing that needs to be performed before input is fed to this network. -
Uses of TensorBase in deepnetts.net.layers
Classes in deepnetts.net.layers with type parameters of type TensorBaseModifier and TypeClassDescriptionclass
AbstractLayer<I extends TensorBase,
O extends TensorBase, W extends TensorBase> Base class for different types of layers.class
AbstractLayer<I extends TensorBase,
O extends TensorBase, W extends TensorBase> Base class for different types of layers.class
AbstractLayer<I extends TensorBase,
O extends TensorBase, W extends TensorBase> Base class for different types of layers.interface
Layer<O extends TensorBase>
Common base interface for all types of neural network layers.Methods in deepnetts.net.layers that return TensorBaseModifier and TypeMethodDescriptionAbstractLayer.getBiases()
ConvolutionalLayer.getFilterDeltaWeights()
ConvolutionalLayer.getFilters()
final TensorBase
AbstractLayer.getGradients()
final TensorBase
OutputLayer.getOutputErrors()
Methods in deepnetts.net.layers with parameters of type TensorBaseModifier and TypeMethodDescriptionvoid
InputLayer.setInput
(TensorBase in) Sets network inputfinal void
OutputLayer.setOutputErrors
(TensorBase outputErrors) -
Uses of TensorBase in deepnetts.net.layers.activation
Methods in deepnetts.net.layers.activation with parameters of type TensorBaseModifier and TypeMethodDescriptiondefault void
ActivationFunction.accept
(TensorBase tensor) void
ActivationFunction.apply
(TensorBase tensor, int from, int to) void
LeakyRelu.apply
(TensorBase tensor, int from, int to) void
Linear.apply
(TensorBase tensor, int from, int to) void
Relu.apply
(TensorBase tensor, int from, int to) void
Sigmoid.apply
(TensorBase tensor, int from, int to) void
SoftSign.apply
(TensorBase tensor, int from, int to) void
Tanh.apply
(TensorBase tensor, int from, int to) -
Uses of TensorBase in deepnetts.net.loss
Methods in deepnetts.net.loss that return TensorBaseModifier and TypeMethodDescriptionBinaryCrossEntropyLoss.addPatternError
(TensorBase predictedOutput, TensorBase targetOutput) CrossEntropyLoss.addPatternError
(TensorBase predictedOut, TensorBase targetOut) LossFunction.addPatternError
(TensorBase predictedOutput, TensorBase targetOutput) MeanSquaredErrorLoss.addPatternError
(TensorBase predictedOut, TensorBase targetOut) Methods in deepnetts.net.loss with parameters of type TensorBaseModifier and TypeMethodDescriptionBinaryCrossEntropyLoss.addPatternError
(TensorBase predictedOutput, TensorBase targetOutput) CrossEntropyLoss.addPatternError
(TensorBase predictedOut, TensorBase targetOut) LossFunction.addPatternError
(TensorBase predictedOutput, TensorBase targetOutput) MeanSquaredErrorLoss.addPatternError
(TensorBase predictedOut, TensorBase targetOut) -
Uses of TensorBase in deepnetts.tensor
Subclasses of TensorBase in deepnetts.tensorModifier and TypeClassDescriptionclass
One dimensional tensor - a vector or an array.final class
A 2D tensor / matrix with specified number of rows and columns..class
class
Methods in deepnetts.tensor that return TensorBaseModifier and TypeMethodDescriptionstatic TensorBase
Tensors.absMax
(TensorBase t, TensorBase max) Returns tensors with max value for each component of input tensors.static TensorBase
Tensors.absMin
(TensorBase t, TensorBase min) final TensorBase
TensorBase.add
(TensorBase t) Adds specified tensor t to this tensor.final TensorBase
TensorBase.addInto
(TensorBase t, TensorBase result) TensorBase.apply
(ActivationFunction af) Tensor1D.copy()
Tensor2D.copy()
Tensor3D.copy()
Tensor4D.copy()
TensorBase.copy()
static TensorBase
TensorBase.multiply
(float m) Multiplies all the values in tensor with a specified input parameter.TensorBase.sqr()
final TensorBase
TensorBase.subInto
(TensorBase t, TensorBase result) Methods in deepnetts.tensor with parameters of type TensorBaseModifier and TypeMethodDescriptionstatic TensorBase
Tensors.absMax
(TensorBase t, TensorBase max) Returns tensors with max value for each component of input tensors.static TensorBase
Tensors.absMin
(TensorBase t, TensorBase min) final TensorBase
TensorBase.add
(TensorBase t) Adds specified tensor t to this tensor.final TensorBase
TensorBase.addInto
(TensorBase t, TensorBase result) static final void
Tensors.copy
(TensorBase src, TensorBase dest) final void
TensorBase.copyFrom
(TensorBase src) final void
TensorBase.div
(TensorBase t) Element-wise divison with specified tensor.boolean
TensorBase.equals
(TensorBase t2, float delta) static void
Tensors.max
(TensorBase t1, TensorBase t2, TensorBase result) static void
Tensors.min
(TensorBase t1, TensorBase t2, TensorBase result) void
TensorBase.multiplyElementWise
(TensorBase tensor2) final void
TensorBase.sub
(TensorBase t) Subtracts specified tensor t from this tensor.static final void
TensorBase.subInplace
(TensorBase t1, TensorBase t2) Subtracts tensor t2 from t1.final TensorBase
TensorBase.subInto
(TensorBase t, TensorBase result) static String
TensorBase.valuesAsString
(TensorBase[] tensors) Constructors in deepnetts.tensor with parameters of type TensorBase -
Uses of TensorBase in deepnetts.util
Methods in deepnetts.util that return TensorBaseMethods in deepnetts.util with parameters of type TensorBaseModifier and TypeMethodDescriptionvoid
ImagePreprocessing.apply
(TensorBase input) void
ImagePreprocessing.setMean
(TensorBase mean)