Package | Description |
---|---|
deepnetts.automl |
Support for automatically building deep learning models using hyper-parameter search.
|
deepnetts.eval |
Evaluation procedures for machine learning models, used to estimate how good models are performing when given new data that (that was not used for training).
|
deepnetts.net |
Neural network architectures with their corresponding builders.
|
deepnetts.net.loss |
Commonly used loss functions, which are used to calculate error during the training as a difference between predicted and target output.
|
deepnetts.net.train |
Training algorithms and related utilities.
|
deepnetts.util |
Various utility classes including Tensor, image operations, multithreading, exceptions etc.
|
Modifier and Type | Interface and Description |
---|---|
interface |
NetworkFactory<T extends NeuralNetwork>
Base interface for all network factories.
|
Modifier and Type | Method and Description |
---|---|
NeuralNetwork |
HyperParameterSearch.getNetwork() |
Modifier and Type | Method and Description |
---|---|
javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>> |
HyperParameterSearch.getEvaluator() |
Modifier and Type | Method and Description |
---|---|
HyperParameterSearch |
HyperParameterSearch.evaluator(javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) |
Modifier and Type | Method and Description |
---|---|
ClassificationMetrics |
ClassifierEvaluator.evaluate(NeuralNetwork neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
Performs classifier evaluation and returns classification performance metrics.
|
javax.visrec.ml.eval.EvaluationMetrics |
RegresionEvaluator.evaluate(NeuralNetwork neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) |
static ClassificationMetrics |
Evaluators.evaluateClassifier(NeuralNetwork<?> neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) |
static RegressionMetrics |
Evaluators.evaluateRegressor(NeuralNetwork<?> neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
Evaluates specified neural network with test set, as a regression model and returns basic regression evauation metrics.
|
Modifier and Type | Class and Description |
---|---|
class |
ConvolutionalNetwork
Convolutional neural network is an extension of feed forward network, which can
include 2D and 3D adaptive preprocessing layers (Convolutional and MaxPooling layer),
which is specialized to learn to recognize features in images.
|
class |
FeedForwardNetwork
Feed forward neural network architecture, also known as Multi Layer Perceptron.
|
Modifier and Type | Method and Description |
---|---|
default float |
LossFunction.valueFor(NeuralNetwork nnet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> dataSet)
Calculates and returns loss function value for the given neural network and data set.
|
Constructor and Description |
---|
BinaryCrossEntropyLoss(NeuralNetwork neuralNet) |
CrossEntropyLoss(NeuralNetwork neuralNet) |
MeanSquaredErrorLoss(NeuralNetwork neuralNet)
Creates a new mean squared error loss for the given neural network.
|
Modifier and Type | Method and Description |
---|---|
NeuralNetwork |
KFoldCrossValidation.getBestNetwork() |
NeuralNetwork<?> |
BackpropagationTrainer.getNeuralNetwork()
Returns a neural network trained by this trainer.
|
Modifier and Type | Method and Description |
---|---|
KFoldCrossValidation.Builder |
KFoldCrossValidation.Builder.model(NeuralNetwork neuralNet) |
Modifier and Type | Method and Description |
---|---|
KFoldCrossValidation.Builder |
KFoldCrossValidation.Builder.evaluator(javax.visrec.ml.eval.Evaluator<NeuralNetwork,javax.visrec.ml.data.DataSet<? extends MLDataItem>> evaluator) |
Constructor and Description |
---|
BackpropagationTrainer(NeuralNetwork neuralNet)
Creates an instance of BackpropagationTrainer for the given neural network to train.
|
Modifier and Type | Method and Description |
---|---|
static NeuralNetwork |
FileIO.createFromFile(File file) |
static NeuralNetwork |
FileIO.createFromJson(File file) |
static NeuralNetwork |
FileIO.createFromJson(org.json.JSONObject jsonObj) |
static NeuralNetwork |
FileIO.createFromJson(String jsonStr) |
Modifier and Type | Method and Description |
---|---|
static void |
TensorflowUtils.importWeights(NeuralNetwork network,
String weightsFileName) |
static String |
FileIO.toJson(NeuralNetwork<?> nnet)
Returns JSON representation of specified neural network object.
|
static void |
FileIO.writeToFile(NeuralNetwork neuralNet,
String fileName)
Serializes specified neural network to file with specified file.
|
static void |
FileIO.writeToFileAsJson(NeuralNetwork neuralNet,
String fileName) |
Copyright © 2022. All rights reserved.