Package | Description |
---|---|
deepnetts.eval |
Evaluation procedures for machine learning models, used to estimate how good models are performing when given new data that (that was not used for training).
|
Modifier and Type | Method and Description |
---|---|
static ClassificationMetrics[] |
ClassificationMetrics.createFrom(ConfusionMatrix confusionMatrix)
Creates classification metrics from the given confusion matrix.
|
ClassificationMetrics |
ClassifierEvaluator.evaluate(NeuralNetwork neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet)
Performs classifier evaluation and returns classification performance metrics.
|
static ClassificationMetrics |
Evaluators.evaluateClassifier(NeuralNetwork<?> neuralNet,
javax.visrec.ml.data.DataSet<? extends MLDataItem> testSet) |
ClassificationMetrics |
ClassifierEvaluator.getMacroAverage() |
Modifier and Type | Method and Description |
---|---|
Map<String,ClassificationMetrics> |
ClassifierEvaluator.getMetricsByClass() |
Modifier and Type | Method and Description |
---|---|
static ClassificationMetrics.Stats |
ClassificationMetrics.average(ClassificationMetrics[] results) |
Copyright © 2022. All rights reserved.